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ABSTRACT

Harnessing Data Structure for Health Monitoring and Assessment of Civil

Structures: Sparse Representation and Low-rank Structure

by

Yongchao Yang

Civil structures are subjected to ambient loads, natural hazards, and man-made
extreme events, which can cause deterioration, damage, and even catastrophic failure
of structures. Dense networks of sensors embedded in structures, which continuously
record structural data, make possible real-time health monitoring and diagnosis of
structures. Effectively and efficiently sensing and processing the massive sensor data,
potentially from hundreds of channels, is required to identify (update) structural
information and detect damage as early as possible to inform immediate decision-
making.

Different from traditional model-based and parametric methods that usually re-
quire intensive computation and expert attendance, this thesis explores a new data-
driven methodology towards rapid, unsupervised, and automated system identifica-
tion and damage detection of structures as well as data management by harnessing
the data structure itself. Specifically, the sparse representation and low-rank struc-
ture inherent but implicit in the multi-channel structural response data are exploited
for efficient data sensing, processing, and management in real-time health monitor-
ing and non-destructive assessment of structures. Numerical simulations, laboratory

experiments.onbench-scale structures, and real-world structures examples, including
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seismically excited buildings and a super high-rise TV tower, are investigated.
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Chapter 1

Introduction

1.1 Motivation

Detecting damage of civil structures as early as possible is essential to ensure struc-
tural safety and integrity during their service subjected to various natural disasters
(e.g., earthquakes and hurricanes) and man-made extreme events (e.g., blasts and
impacts). It allows prompt maintenance and thus reduces the repair cost; in addi-
tion, timely damage information makes possible for informed decisions and immediate
actions before catastrophic failure of structures occurs. To achieve this goal, it has
recently become a common practice to embed in structures a structural health moni-
toring (SHM) system with an array of networked sensors to continuously monitor and
assess the structural performance. For example, the California Strong Motion Instru-
mentation Program (CSMIP) [37] has installed across California seismic monitoring
sensor networks in more than 600 ground motion stations as well as 200 civil struc-
tures (e.g., buildings, bridges, dams, etc). Additionally, many landmark suspension
bridges and high-rise buildings or towers have been equipped with dense networks
of sensors: the Tsing Ma Bridge (1997) in Hong Kong, the Canton Tower (2010) in
Guangzhou, the Stonecutters Bridge (2009) in Hong Kong, with more than 280, 800,
1500 sensors [108][107], respectively; other examples abound.

As such, the data-intensive issue has arisen. On the one hand, the continuously

collected sensor data provides high-resolution and multi-dimensional information of
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the structure, which is vital for identifying (updating) structural information, evaluat-
ing its health status, and detecting damage in real time. On the other, processing and
managing the overwhelmingly voluminous data continuously collected from the SHM
system requires the system identification and damage detection algorithms not only
effective, but also efficient and automated, to extract useful structural information
for on-line monitoring as well as off-line long-term performance assessment. In addi-
tion, real-time SHM and decision-making naturally requires sensing, transferring, and
managing massive SHM data sets efficiently (especially during extreme events such as
earthquakes and hurricanes), a subject which has received little attention in current
literature and SHM practice. For example, the measured (or recorded) Canton Tower
SHM data with many outliers (shown in Fig. [LT]) clearly needs to be cleansed before

it can be used for further analysis.

X 10'3 Measured Structural Responses

Accel. (m/s?)

'8 L 1 1 |
0 500 1000 1500 2000 2500 3000 3500

Time (Sec)

Figure 1.1 : The recorded ambient vibration accelerations of the Canton Tower from
12:00 am Jan. 20th, 2010 to 1:00 pm Jan. 20th, 2010. (20 channels data are shown
with different colors, available in Ref. [I].) Chapter @ proposes a solution to efficiently
remove these outliers; compare to the denoised Fig. 0.4

Ol LAC U Zyl_ilsl
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1.2 Traditional methods and their drawbacks
1.2.1 Parametric model based methods

Vibration-based techniques, such as modal analysis, have been widely studied for
SHM. Traditional modal identification typically complies the wisdom of system iden-
tification which is based on the relationship of inputs and outputs [46][88][83]. This
corresponds to an ideal situation where excitation to the system can be controlled
or measured. For civil structures, typically large-scale, such as bridges, buildings,
dams, etc., it is extremely difficult or expensive, if not impossible, to apply con-
trollable excitation to conduct input-output modal identification; equally challenging
is the measurement of the ambient excitation (e.g., wind, traffic, etc) to structures.
Output-only modal identification methods using only the available structural response
data [I10][I8] are therefore needed, especially for real-time SHM.

Existing output-only modal identification algorithms, such as Ibrahim time do-
main (ITD) method [66], eigensystem realization algorithm (ERA) [68], natural ex-
citation technique (NExT) [67], stochastic subspace identification (SSI) [I39], and
frequency domain decomposition (FDD) [19], are widely used to perform modal iden-
tification of civil structures [22][121][18][97][95]. Most of these methods presume a
parametric mathematical model, e.g., stochastic state-space model (with model state
matrix A € R™", output matrix C € RP*" state vector x(k) € R" and out-
put y(k) € RP, and process noise (excitation) w(k) € R" and measurement noise

v(k) € RP)

x(k+1) = Ax(k) + w(k) (1.1)

y(k) = Cx(k) + v(k) (1.2)

to.characterize the structural dynamic behaviors and then fit the measured structural
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responses to the model.

Many established damage detection methods also share similar strategy with the
assumption that the structural behaviors follow a certain form of model (e.g., physi-
cal or modal model), where abnormal behavior indicates damage. Especially, modal-
based damage identification methods, which assume that a change of modal parame-
ters signifies damage, have been extensively studied (a summary review [41]). Other
parameter-dependent methods are also developed, e.g., the observer-based methods
[29], flexibility-based method [14][52], method using input error function [79].

These system identification and damage detection methods are mostly model
based and parametric; as such, they are typically computationally demanding and
require much expert attendance for parameter adjustments associated with the model
fitting process. For example, the model order problem remains a challenge, for which
using the stability chart demands exhaustive expert interference and time-consuming
computation burden: although effective for offline applications, they are not suitable
for real-time unsupervised processing of the large-scale data sets of civil structures.
On the other hand, non-parametric data-driven algorithms, which extract structural
features and performs structural assessment directly from the data, are computa-
tionally efficient and have high potential for real-time processing the massive SHM

data.

1.2.2 Data-driven approaches

Unlike traditional parametric model based methods which are derived from the (math-
ematically) assumed physical processes, data-driven approaches aim to extract the
desirable information directly from the available data, without explicit knowledge of

the (assumed) physical or dynamic model of the underlying system.
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Many signal processing based system identification and damage detection algo-
rithms that have been developed in the literature fall into this category, featuring
efficient computation and adaptive implementation, such as those based on wavelet
transform [75][125] [59] [55] [10][56], Hilbert-Huang transform (HHT) [61] [141][142], and
other time-frequency analysis techniques [96], to name a few. Successful implemen-
tations, however, require practitioners to wisely adjust the algorithm parameters; for
example, the wavelet basis and the scales need to be carefully selected in the wavelet-
based methods, and the prescription of the modal bandwidth as well as the sifting
process also influence the abilities of the HHT methods. In addition, measurement
noise also presents a challenge to their effectiveness; the popular wavelet transform
is briefly reviewed in the following and its advantages and drawbacks are shown with
an example.

The discrete wavelet transform (DWT) achieves a multi-resolution analysis of a

signal f(t) by [90][38]

th=gm | 087G Ry (13)

uh= g | F00° (5~ by (14)

where [ and k£ are the scale and translation parameters, respectively, and * denotes
the complex conjugate operator. v and w are the resultant approximation and detail
(wavelet) coefficients from the scaling function ¢(t) and wavelet basis ¥(t), respec-
tively. Therefore, WT realizes a multi-resolution time-frequency analysis of f(t) by
decomposing it into low-frequency (approximation) and high-frequency (detail) band
at each level. At the [th scale level, the approximated component f! and detailed

component f! also retain the temporal information of f(¢) and are represented, re-
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spectively, by

fi= Y wholy — k) (16)

If f(t) is decomposed into L levels, then it can be reconstructed by

F) = fH0+ ) fat) (1.7)

The interesting property (e.g., pulse-like sparse feature, which is the salient signa-
ture of damage, as detailed in later Section [[3 I and Fig. [[7)) of f(¢) may be revealed
on certain wavelet scales [90]. However, it is easily destroyed by noise; see Fig.
for example.

Many pattern recognition or classification based damage identification techniques
[16] [21] belong to the supervised family of data-driven approaches. The classification-
based methods typically involve three steps: feature extraction (from data), training
(the empirical model, typically parametric), and classification (Fig.[[3). For damage
identification, the extracted features from various predefined or reference damage
classes, including different damage locations and damage extents, are used as inputs
to train the classifiers, which can then identify the damage class of the test (unknown)
feature (representing the current state of the structure). For example, the support

vector machines (SVMs) classifier model is
f(x;) = sign(w®(x;) + b) (1.8)

where x; € R" is the input vector, and w € R", ® (mapping function), and b are

the parameters of the classifier, which are obtained by a training set of x; € R"(j =

Ol LAC U Zyl_ﬂbl
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WT of f(t) by db10 WT of f(t) with noise by db10

AAMAMAMNAAAAN 2 ANAMAMAANANANAN
AN A
e e

@

fi)
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fi)

== l \.‘
s 1 =
= ., . 1r . . = "MM‘M m' N M WMM' "HM‘M”W ! Wmm
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time (sec) Time (sec)
(a) (b)

Figure 1.2 : The pulse-like feature hidden in a signal can be revealed in the wavelet
domain and is also easily destroyed by noise. A signal with a sampling frequency of
100 Hz f(t) = sin(27-1-t)+sin(27-1.5-t),t = 0 ~ 10;sin(27-1-t)+sin(27-1.499-1),t =
10 ~ 20 experiences a slight frequency transition from 1.500 Hz to 1.499 Hz at the
10th second. Although no sign of such transition can be observed from its time
history, pulse-like feature is distinguished in the wavelet-domain decomposed signal
using the db10 wavelet basis [38]. (a) It is shown as a pulse-like feature at the 10th
second in the detailed components fy(¢) on all the four scales. (b) This pulse-like
feature in the wavelet domain is completely buried when f(¢) is contaminated by
Gaussian white noise with a level of SNR=40 dB. ICA is capable of extracting the

buried pulse-like feature from the noisy wavelet-domain signals, as detailed in Section
L34 and Fig. [LT3] and more in Chapter @l

1, ..., q) and their associated label; the decision function sign(-) assigns the class (label)
of x; € R™. Successful examples based on SVMs are seen in [137][135][136]; others also
include those based on artificial neural networks (ANN) [154][124], nearest neighbor
[134], and Markov observers [40)].

Several factors, however, could influence the performance of these classification-
based damage identification methods that are mostly dependent on the training pro-
cess of the classifiers. In the ANN-based methods, for example, the number of in-

put/output and hidden nodes in the network could affect its accuracy [154][124], and
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Training

Parametric classifier
ANN, SVM, etc

Figure 1.3 : The principle of traditional pattern recognition or classification. Ref-
erence information is used to train the parametric classifier (blue) such as artificial
neural network (ANN) and support vector machines (SVMs), which then assigns
the unknown object (black) a predefined label or class (red). The parametric train-
ing process can be time-consuming and user-involved. One may compare to the new
sparse representation classification without a parametric classifier model or a training
process (Fig. [[L8) and more explorations in Chapter [).

the global convergence of the algorithm is not guaranteed in most cases [16]. Com-
pared to ANN, the multi-class SVM-based methods have advantages when the sample
numbers are small [21][135]; nevertheless, their success depends on the choice of the
algorithm parameters, i.e., the kernel function selection and its associated parameters
[21][137][136]. Although optimal choice may be obtained through trial and error or
optimization algorithms, and such an approach increases computational burden and
needs the skill of an experienced practitioner; hence is not preferable in many situa-
tions, e.g., in real-time monitoring, where rapid and unsupervised processing of the

large-scale data set is required.
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1.3 A new perspective

Traditional research on SHM relies on either the physical model or the use of differ-
ent signal processing techniques; this thesis shifts the focus on to harnessing the
inherent data structure itself of the structural response data to extract the desir-
able structural features and damage information, otherwise invisible, towards rapid
(even real-time), unsupervised (automated), and effective system identification, dam-
age detection, as well as massive SHM data management. Particularly, the structural
features and damage information intrinsic within the structural response data, usu-
ally large-scale in SHM, possesses sparsity nature and low-rank structure, which,
fortunately, are readily reachable by new mathematical tools.

In particular, the recent developments of sparse representation (SR) [20] and
compressed sensing (CS) [20][43], as well as the unsupervised blind source separa-
tion (BSS) [34], have presented new opportunities to develop innovative data-driven
approaches towards efficient and effective sensing, processing, managing large-scale
SHM data sets. In each of the following sections, their fundamental theories are first
reviewed, and then their implications in output-only modal identification, damage
detection, and massive data management of civil structures, which are explored in

this thesis, are briefly introduced with details in the ensuing chapters.

1.3.1 Sparse representation

In MRI [84], computer vision [I38], digital camera/video [132], etc, SR and CS have
provided a new solution to sensing and processing of large-scale data sets, with recent
exploratory applications also in SHM [9] [148] [152][150] [91] [109].

To mathematically express sparsity of a signal x € R”, it is useful to define the
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lo-norm [20],

[elle, = #{i - i # 0} (1.9)

simply counting the number of non-zeros in x. A signal x (vector) is k-sparse if it
has at most k non-zeros, i.e., ||z[l,, < k. In a more general perspective, x is said to

be k-sparse (transform sparse) in a domain ¥ with a representation o € RY

N
r=V¥a= Zajwj (1.10)
j=1
if [|z]l, < k. O = [thy,....,¥n]T € R is an orthonormal basis (e.g., sinusoid,

wavelet, etc), whose jth row is 1, € RY (or CV on Fourier basis). a € R" is the
coefficient sequence of € RY on ¥, whose jth element o; = (z,;) (inner product).
This generalization is particularly useful since, in practice, x is typically sparse in an
appropriate domain instead of its original domain. A simple example is the sinusoid,
which is sparsest (k = 1) in the frequency domain. Another example concerning
multivariate signals is shown Fig. [[L.4]

It is seen that a sparse representation of signals reveals their hidden characteristics
that are otherwise implicit. The recent breakthrough in signal sensing and processing,
compressed sensing [20][43], further exploits the sparsity of signals in an appropriate
representation domain and allows exact recovery of a sparse signal, enabled by /;-
minimization (||z|ls, = Y30, ||, the tightest convex relaxation of £o-minimization),
from far fewer incoherent random measurements than what is suggested by the sam-
pling theorem. A simple example shown in Fig. illustrates that ¢;-minimization
correctly recovers the sparse signal from few random measurements, while it is not
the case for the conventional fo-minimization (least square estimation).

It turns out that the structural features and damage information of interest hidden

in the structuralresponse data are naturally sparse and can be readily revealed by
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Time Domain Frequency Domain
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Figure 1.4 : Sparse representation reveals multivariate signal characteristics: three
hidden source signals, s1(t) = cos (27 - 0.3 - t), s9(t) = cos (27 - 0.7 - t), and s3(t) =
1 05 2
2 3 1
observable mixtures x1(t) = s1(t) + 0.5s2(t) + 2s3(t), 22(t) = 2s1(t) + 3s2(t) + s3(¢).
(a) In the original time domain, the scatter plot of x(¢) reveals little information on
the characteristics of source signals and the mixing process. (b) As opposed, notice
that x(¢) has sparse representations in frequency domain-its constituent sources are
spectrally monotone; transform x(t) into the sparse frequency domain to yield x(f) (f
is the frequency index), and the scatter plot of x(f) (z1(f) versus xs(f)) shows that
the points of x(f) (sparsely) cluster to three significant directions of the columns of A,
which can be captured by visual inspections. The interpretation of sparse component
analysis (SCA) in output-only modal identification is covered on Chapter

cos (2m - 1.3 - t) are mixed by a rectangular matrix A = to yield two

the mathematical tools of sparse representation. It has been the common thread
to explicitly exploit such data structure towards developing innovative data-driven

system identification and damage detection approaches in the thesis. For example,

in output-only modal identification, express the available structural responses x(t) as

Ol LAC U Zyl_i.lbl
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Recovering a sparse signal from its incomplete random measurement
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Figure 1.5 : (a) A sparse signal o € R*® (row vector) with only one non-zero entry
is incompletely sensed by multiplying by a zero-mean and unit-variance normally
distributed mixing matrix R € R*®  yielding an observation signal 3 = aR € R®
(row vector). For recovery of the underlying o from the incomplete knowledge of R
and 3, £;-minimization correctly recovers the original sparse signal while the minimal
least square estimation fy-minimization fails; (b) The geometric illustration of ¢;-
minimization in 3-dimensional space. The ¢;-norm sphere (dashed red) expanding
from the origin to the three coordinates «q, as, and ag, intersects for the first time
the constraint subspace plane aR = [, yielding the solution o* with minimal ¢;-
norm. «* is seen sparsest with only one non-zero element living on the «; axis.
On the other hand, spreading the well-known fy-minimization (minimal square (-
norm solution) sphere (dashed green) unfortunately harvests a dense solution & whose
energy disperses among all three axis. The rich implications of the ¢;-minimization
sparse recovery technique are explored in Chapter 3] and Chapter [l

modal expansion,

x(t) = @q(t) = > ¢uailt) (1.11)

The underlying modal responses q(t) are monotone—active at only one distinct frequency—
and are most sparsely and disjointly distributed in the frequency domain. Hence,

transform the modal expansion Eq. (LII)) into the sparse frequency domain,

x(f) = ®a(f) = >_¢ia(f) (1.12)

Thengin the scatter plot of x(f), the points of x(f) that belong to ¢;(f) will
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sparsely cluster to the direction of the ith modeshape ¢, (i = 1,...,n) (Fig. [L6) ,
making the output-only modal identification problem fairly intuitive and efficient,
even when the sensor number is far less than that of the active modes (see Chapter

for more details).

Scatter Plot of x(f)
15 ' !
1 .
05" |
%
§ O
-0.5f
AF
15 ' : |
3 05 0 0.5 1
z1(f)

Figure 1.6 : The sparse clustering of the modal expansion in the scatter plot of the
system responses in frequency domain using Sensor 1 and 2 of a 6-DOF system (more
than Chapter B]).

As another example, sparsity is naturally the salient signature of damage (see
Fig. [[7) in the structural responses on some sparse signal representation domain,
e.g., the popular wavelet domain, which, however, is easily affected by noise as seen
in Fig. Fortunately, the new mathematical tool, independent component analy-

64] wi earning rule towards multivariate sparse components, enables
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extraction of the hidden sparse signature from the noisy signals (see Section [[.3.4] for

a brief introduction and more in Chapter [)).

o o N o

Figure 1.7 : Interpretation of structural damage as sparse signature in structural
responses. The structure is embedded with a network of sensors (denoted as blue
circles) which continuously measure structural responses. If damage (e.g., a crack,
denoted as red) occurs, then the sensor data in the vicinity of damage will experience
singular phonomenon, which behaves as implicit spike-like feature on some sparse
domain such as wavelet domain. Its implication in structural damage identification
is explored in Chapter Ml

Not only the structural dynamic and damage features have implicit sparse repre-
sentation, the pattern recognition or classification framework for damage identifica-
tion itself is also sparse in nature: the damage class of the test structure can only
belong to one of the predefined reference damage classes, thus establishing a fairly
straightforward sparse representation (SR) classification method for damage quan-
tification, which alleviates the computationally-intensive parametric training process
that is traditionally required. See Fig [L.§| for a brief introduction and Chapter

presents this new classification framework for damage identification.

1.3.2 Low-rank representation

Structural responses, from potentially hundreds of channels or sensors, can be rep-
resented as a data matrix. Analogous to the sparsity nature of single-channel data

(vector), in this thesis, the intrinsic low-dimensional data structure of multi-channel
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@, € R" P e R"™Y(n < w) a; € RY
" Sparse
Test Feature Reference Dictionary = Representatign

Figure 1.8 : The sparse representation classification framework. The test feature ¢, €
R™ (the red column, e.g., the modeshape column in structural damage identification)
only activates itself via its sparse representation a; € R" (red in its own location,
white denotes inactivated zero) in terms of the large reference dictionary ¥ € R™**
(n < w) (by concatenating all feature columns of all candidate reference classes),
expressed as a highly underdetermined linear system of equations ¢, = Wea;. The
unique non-zero element (red) in e; (recovered by ¢;-minimization) directly dictates
which class the test feature belongs to, within the predefined reference dictionary.
Sparse representation classification does not assume a parametric classifier or training;
its implication in structural damage identification is explored in Chapter

data matrix is also explicitly exploited, e.g., by singular value decomposition (SVD)
or principal component analysis (PCA).
The data matrix X € R™ with m sensors and N time history sampling points

(m < N) has an SVD representation (also see Fig. [1.9(a)| for a brief illustration)
X =UnV" =) ouv! (1.13)

where U = [uy, ..., u,,] € R™*™ is an orthonormal matrix associated with the channel
(variable) dimension, called left-singular vectors or principal component directions;
3 € R™¥ has m diagonal elements o; as the ith singular value (o; > ... > o, >
Opi1 = . = 0y = 0), and V = [vy,...,vy] € RV ig associated with the time

historym(measurement) dimension, called the right-singular vector matrix. SVD is
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closely related to the eigenvalue decomposition (EVD): the left-singular vector matrix

U is obtained by the EVD of its covariance matrix

XX = ux?u” (1.14)
and similarly for the right-singular vector matrix V,

XTX = vevT (1.15)

where ¥ € R™™ and £ € RY*N are zero-truncated and zero-padded version of
¥ € R™N | respectively.

It is well understood that the ¢th singular value o; is related to the energy captured
by the ith principal direction of X. In structural dynamics, under some assump-
tion, the principal directions would coincide with the mode directions [48] with the
corresponding singular values indicating their participating energy in the structural
responses X, i.e., the structural active modes are captured by r principal components
under broadband excitation.

An empirical, but frequently sound, observation is that there are typically only
few active modes in the structural responses [149]; in other words, few of its singular
values are active: r is typically quite small. If the sensor or channel number m is
reasonably large, then 7 < min (m, N) = m and X € R™¥ is said to be low-rank.
However, this is seldom so for large civil structures, because the sensor number m is
not so much more than (often times even less than) the involved r modes; as a result,
r < m can’t be guaranteed for a low-rank representation.

In this thesis, a simple yet effective strategy-rank-invariant matrix reshape
[150] (Fig. is proposed to guarantee a low-rank representation of structural
response data matrix, regardless of the original dimension of X € R™*¥ . Essentially,

mode dnformationg(few are active; hence, the rank of the structural response data
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matrix is small) remains invariant regardless of the reshape of the structural response
data matrix; a brief example of the structural seismic response data is shown in
Fig. [L10] where in the original dimension of the structural response data matrix,
the implicit low-rank structure is not impressive (Fig. [1.10(a)]); after reshape of the
data matrix, the low-rank representation stands out Fig. . It is detailed in
Chapter [0, Chapter [, Chapter[8, and Chapter [0, where many examples indicate that
such implicit (reshaped) low-rank structure inspires innovative and efficient solutions
to process and manage the multi-channel, often very large-scale, structural response

data.

1.3.3 Low-rank plus sparse representation

Inspired by the intrinsic low-dimensional structure of the multi-channel structural
responses and the sparsity nature of the damage signature, this thesis explores an
emerging high-dimension data analysis technique, principal component pursuit (PCP)
or robust principal component analysis, and finds new applications in the proposed
data-driven paradigm towards rapid and unsupervised SHM and damage detection.

Rme

PCP is able to decompose a matrix X € into a superposition of a low-rank

matrix L € R™¥" and a sparse matrix S € R™*" as
X=L+S (1.16)

S € R™ is said to be sparse if it has only few non-zero entries, and L € R™ is
low-rank in the sense that its SVD has few active singular values.

The L+ S representation can intuitively represent the multi-channel structural vi-
bration responses corrupted by gross outliers, which is not uncommon in real-recorded
SHM data (see Fig. [[LT]): the outliers or gross errors are sparse in nature, and the un-

derlying cleangnulti-channel structural responses typically possess intrinsic (reshaped)
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Figure 1.9 : (a) The singular value decomposition of the data matrix X € R™¥
(e.g., m sensors and N time history points) as a linear combination of r active singular
vector subspaces. If r < min (m, N) = m, then explicitly X has a low-rank structure.
(b) Matrix reshape is proposed to guarantee and enhance the low-rank representation
of X if it does not have an explicit low-rank structure (i.e., if r < min (m, N) = m
is not true, which is often the case for SHM data). Divide the fat X € R™*¥
into [ segments and reshape it to a new more “square” matrix X € R¥*V (w =
m x l,v = N/I) with each segment as one “row”. If X is structural vibration response
data matrix, the rank of X remains r’ ~ r (associated with the active modes) but
r’ ~ r < min(w, v) is significantly low hence a low-rank representation. The right plot
shows that the singular values of the reshaped data matrices with different reshape
factor [ vanish radically (more in Chapter 8 and Chapter [)).

low-rank structure. Therefore, after decomposition of the corrupted X € R™¥ into
L € R™N plus S € R™¥Y L € R™ represents the underlying clean structural

responses, removing the outliers represented by S € R™* (see Chapter [).
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Original Earthquake Response Data of the Canton Tower
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Figure 1.10 : After reshaping of the structural seismic response data matrix, its
low-rank structure is dramatically outstanding with its singular values vanishing rad-
ically (more in Chapter B). (a) The eigenvalues (square of the singular values) of the
earthquake response data matrices of the Canton Tower in their original dimension:
X € R20%180000 for the Burma Earthquake, X € R!7X180000 for the Sumatra Earth-
quake, and X € R20%180900 for the Japan Earthquake. (b) The eigenvalues (square of
the singular values) of the earthquake response data matrices of the Canton Tower
in reshaped dimension: X € R2000x1800 o1 the Burma Earthquake, X € R700x1800 {5
the Sumatra Earthquake, and X € R2000%1800 for the Japan Earthquake.
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In addition, the L 4+ S representation has an innovative insight into the data
structure of the multiple temporal close-up frames of structures as a superposition
of a background component and an innovation component: L represents the static
or slowly-changing correlated background component among the temporal frames,
which is naturally low-rank; S captures the innovation information in each frame
induced by the evolutionary damage, which is naturally sparse standing out from
the background. See the proposed dynamic imaging framework for local structural

assessment in Fig. [LTI] and Chapter [l for more details.

1.3.4 Blind source separation (BSS)

Real-time SHM requires continuous and efficient processing of the massive measured
data with as little expert attendance as possible. BSS as a promising unsupervised
multivariate machine learning technique is able to recover the hidden source signals
and their characteristic factors using only the measured mixture signals, with high
potential in unsupervised learning of the patterns and features hidden in the large-
scale multi-channel SHM data set.

The linear instantaneous BSS model is expressed as

x(t) = As(t) = Z a;s(t) (1.17)

where x(t) = [21(t), ..., 2, (t)]T is the observed mixture vector with m mixture signals,
and s(t) = [s1(t), ..., s,(t)]" is the latten source vector with n sources; A € R™ " is
the unknown constant mixing matrix consisting of n columns with its 7th column
a; € R™ associated with s;(t). The striking resemblance between the BSS model
(Eq. (LI7)) and the modal expansion (Eq. (81])) of structural responses x(t) as linear

mixtures of the modal responses q(t), proposed in Ref. [74], naturally incorporates
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the output-only modal identification problem to the BSS problem (see Fig. for
illustrations).

With only x(¢) known, Eq. (LI7) may not be mathematically solved. To alleviate
the problem, most BSS techniques, such as independent component analysis (ICA)
[65], second order blind identification (SOBI) [13], and complexity pursuit (CP) [129],
exert a general assumption that the source signals s(t) are statistically independent
(or as independent as possible) at each time instant ¢; surprisingly, it suffices to recover
the sources and the mixing matrix in most practical applications [64]. However, for
output-only modal identification, ICA method is restricted to undamped and very
lightly-damped structures [74][145][146]; SOBI methods meet with difficulty in non-
stationary excitation, closely-spaced modes, and non-diagonalizable damping cases
[T12][159] [93] [57)[7] [93].

This thesis explores another approach to solve the BSS problem (incorporating
the output-only modal identification problem): to exploit the signal complexity (CP
method) of the mixtures (structural responses) and sources (modal responses) itself
[147] (Chapter[2); a simple example of signal complexity is shown in Fig.[[LT4l Besides,
the rich implications of the learning rule, independence of source signals measured by
non-Gaussianity (ICA method), lead to sparse distribution (Fig. [L.13) which indicates
the structural damage feature in data-driven damage detection [146] (Chapter []) and
inspires new applications in significantly compressing the multi-channel structural
responses [149] (Chapter [7). The multivariate unsupervised BSS learning rule is

exploited in Chapter 2l Chapter B Chapter 4, and Chapter [7l
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1.4 Objective

The overall objective of the dissertation research is to systematically develop a new
paradigm with effective and efficient data processing and management algorithms
towards rapid, unsupervised, and automated health monitoring and assessment of civil
infrastructure. It aims to address two bottlenecks which have hindered modern SHM
systems from achieving real-time monitoring and assessment: rapid processing of
continuously-streaming data sets and efficient large-scale data management (sensing,
transfer, communication, etc) with dense networked sensors (Fig. [L15). Opposed to
the traditional model based and parametric methods that are usually computationally
intensive and require extensive user-involvement, the proposed methodology is data-
driven in nature-by harnessing the data structure itself of the (available) structural
response data set. Specifically, the sparse representation and low-rank structure of
the massive data set, which turn out to be the salient structural dynamic and damage
features, are exploited to establish a novel data-driven paradigm, enabling rapid data
sensing and transmission, efficient output-only modal identification, real-time damage
detection and non-destructive assessment of civil structures. Numerical simulations,
laboratory experiments, and field measurement data of a real-world large-scale cable-
stayed bridge, the super high-rise Canton Tower, and seismically excited buildings

are investigated.

1.5 Outline

This thesis centers around the methodology of harnessing the data structure itself
(mostly, sparsity and low-rank structure) of the multi-channel structural responses

towards rapid and unsupervised health monitoring and assessment of civil infrastruc-
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ture. It is organized as follows:

Part 1 includes Chapter 2l and Chapter [3] which present new output-only non-
parametric data-driven modal identification methods based on the unsupervised mul-
tivariate blind source separation techniques. Specifically, in a data-driven framework,
the signal complexity of the (only available) structural responses and the underlying
modal responses are exploited by the complexity pursuit (CP) learning rule, estab-
lishing a physical connection between the modal expansion and the BSS model (see
a new modal identification CP algorithm in Chapter [2). Chapter [ further harnesses
the sparsity nature of the underlying modal coordinates and addresses the prob-
lem of performing data-driven output-only modal identification using limited sensors
(less than the mode number). The proposed sparse component analysis (SCA) based
method interprets the modal expansion in a new perspective of sparse representation
and clustering, allowing fairly intuitive and efficient output-only modal identification.

Part 2 includes Chapter dl Chapter [B, and Chapter [ developing a data-driven
multi-scale (global and local) damage detection framework. Explicitly, the sparse fea-
ture, which is proposed as the salient signature of damage hidden in the (often very
noisy) structural data, either vibration responses in global SHM (see the proposed
damage identification method via sparse representation in Chapter @) or close-up im-
ages/videos of structures in local non-destructive assessment (see the proposed new
local damage assessment framework dynamic imaging in Chapter [6]), is intention-
ally targeted. Chapter [0 presents a novel sparse representation classification method
for both locating damage and estimating damage severity; it exploits the underly-
ing sparsity nature of the classification problem itself and establishes an extremely
simple data-driven empirical sparse representation methodology, without the need of

reference training and setting up parametric classifier model that is computationally
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intensive and user-dependent.

Part 3 includes Chapter [, Chapter [, and Chapter @, addressing the emerging
large-scale SHM data management problems by harnessing the low-rank structure,
intrinsic but implicit, in the multi-channel structural response data. Specifically,
Chapter [[ presents a new unsupervised data compression method based on low-rank
representation and optimal adaptive multivariate learning rule, removing both intra-
and inter- redundancy of the multi-channel structural response data. Chapter [§ fur-
ther proposes a matrix reshape strategy to guarantee a low-rank representation of any
structural response data matrix to achieve most effective compression of very large-
scale structural response data. Finally, Chapter [ develops a new data cleansing
algorithm for simultaneously removing both dense noise and gross outliers (naturally
as sparse elements) which are ubiquitous in multi-channel structural health monitor-
ing data sets (with an intrinsic low-rank structure).

Chapter [I0l concludes the thesis and recommends future work.
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Figure 1.11 : The dynamic imaging of structures paradigm for real-time automated
damage detection. The upper plot shows that the multiple frames (black) of the
crack developing in the structure (from time 7 to Tl ) can be thought of as a static
background (blue) plus the sparse innovation (red) induced by the cracking. The
middle plot shows that each temporal frame of resolution M; x Ms is stacked into one
column of the data matrix X € RM™*Y (each column is of dimension M = M; x M,
rows representing one temporal frame and there are N columns), which is decomposed
into a superposition of a low-rank coherent background component L € RM*¥ and a
sparse innovation component S € RM*¥ that indicates the time-evolutionary damage
development. Each column of L € RM*Y and S € RM*¥ is finally restacked back to
the original image dimension, and the bottom plot shows the recovered background
component at time Th.

www.manaraa.com




26

Mixture
Source Signal Signal Source Signal
1 1 1
Source Signal '\g_’dur? Blind Source Separation Source Signal
i igna E—— .
! j (ICA, SOBI, CP, & SCA) '
Mixture
Source Signal Signal Source Signal
n m n

(a)
Modal Coordinate ki
— "
/ cf
ky k12 kg ks k3
2
my my m3 —_— > mi
: [F (F [ ’
€1 C12 C23 c3 (&
3
k3
T g
L
e
(b)

Figure 1.12 : (a) Interpretation of the blind source separation (BSS) framework.
Without knowing the original source signals and their mixing process, BSS tech-
niques such as ICA, SOBI, and CP, assume the sources are independent and simul-
taneously recover both the source signals and their mixing characteristics using only
the measured mixture signals. (b) Incorporating the output-only modal identifica-
tion problem to the BSS model: the structural responses from the coupled structures
are linear mixtures (modeshapes) of the independent modal responses, each from the
de-coupled SDOF “system” on the modal coordinate (more in Chapter 2land Chapter
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Figure 1.13 : (a) The BSS technique ICA secking most independent (non-Gaussian)
source signals leads to extracting signals with spiky distribution (such as Laplace
distribution); the theoretical justification is in Chapter @ (b) Two sources (left
column), a pulse-like signal (s1(t) = 2, t = 5 sec; s1(t) = 0, otherwise) and a Gaussian
white noise (s2(t) = 1+ randn(t)), both with a sampling frequency of 100 Hz and
1
0.5
mixtures (middle column) 1 (¢) = s1(t)+s2(t), z2(t) = 0.551(t)+s2(t). The pulse-like
source signal of interest is buried in noisy observed mixtures; however, it is correctly
extracted by ICA, with the first IC (IC1) approximating the pulse-like source. In
the recovered IC1, the temporal location of the pulse-like feature indicates its spike
occurrence instant at Hth second, which agrees with the original pulse-like source.
In addition, the recovered mixing matrix also carries the spatial signature of the

recoveredpcomponentythat can indicate damage location; More in Chapter @l and
Chapter [7.

a time history of 10 seconds, are mixed by a matrix A = ﬂ, yielding the
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Figure 1.14 : The BSS technique CP extracts the simple components from the mix-
tures as the source signals. Signal complexity is approximated by temporal pre-
dictability: the simplest source signal (yellow line), corresponding to the 1st modal
response, is most preditable and has highest predictability value, and so on. More in
Chapter
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Figure 1.15 : A framework of multi-scale sensor network for health monitoring and
assessment of civil structures (e.g., a cable-stayed bridge). The structural data mea-
sured from the optical fiber bragg grating (OFBG) sensors and accelerometers or the
close-up images/videos from digital cameras are transferred to the base station of the
SHM system and then processed to extract the structural and damage features (e.g.,
sparsity and low-rank structure, the thread of this thesis) for decision-making.
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Chapter 2

Output-only Modal Identification by Complexity
Pursuit

Rapid identification of structural modal parameters is essential for online model up-
dating, semi-active structural control, and modal-based damage detection. The lack
of input or excitation information presents the need to develop output-only modal
identification methods, whereas existing output-only modal identification methods
(parametric model based or signal processing based) suffer from intensive compu-
tation and user involvement burdens. This chapter exploits the signal property
itself (complexity) of the available structural responses and the underlying modal
responses, establishing a new data-driven non-parametric output-only modal identi-
fication method based on a novel blind source separation learning rule complexity

pursuit, which can be implemented efficiently and blindly.

2.1 Introduction

In the recent years, blind source separation (BSS) has shown prominent capability as a
new unsupervised signal processing tool [65], and has been introduced into structural
dynamics [6]. Essentially, BSS techniques are able to recover the hidden source signals
and their underlying factors using only the observed mixtures; it may thus be suitable
to perform output-only modal identification.

Two BSS techniques, independent component analysis (ICA) [65] and second order

blind.identification (SOBI) [13], have been successfully applied to conduct output-
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only modal identification of structures [74][145][146][112][159][93][57][7], where the
modal responses are viewed as the targeted sources of the BSS model. Compared to
conventional parameter-fitting methods, the BSS based methods are non-parametric
with straightforward and efficient implementations, and may thus enjoy wider appli-
cations. Several issues on the BSS methods are noted, however. For example, ICA
method is restricted to undamped and very lightly-damped structures [74][145][146];
SOBI methods make assumption of stationary sources [112][159][93][57][7] and meet
with difficulty in the closely-spaced modes and non-diagonalizable damping cases [93],
which are quite common in practical applications of structural dynamics. Besides, the
modified SOBI method proposed in [93] only addresses the lightly-complex modes in
the non-proportional damping case, where the time-frequency ICA method proposed
by the authors [I45], which is able to handle highly-damped structures, also shows
degradation.

This chapter proposes a new output-only time-domain modal identification method
using a novel BSS learning rule termed complexity pursuit (CP) [63][129][130], intend-
ing to handle the aforementioned issues in modal identification. The CP learning rule
is cast into the modal identification framework using the proposed concept of inde-
pendent “physical systems” living on the modal coordinates that connects the modal
expansion and the BSS model targeted by the CP learning rule, such that when the
system responses are fed as mixtures into the BSS model, the CP algorithm can
blindly extract the mode matrix and time-domain modal responses, thereby readily
estimating the modal parameters of the system.

Numerical simulations, experimental study, and real-world seismically exicted
structures examples show that the CP method is able to accurately and efficiently ex-

tract modal information (frequency, modeshape, and damping ratio) directly from the
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measured system responses, even in closely-spaced mode and highly-damped mode
cases, as well as in the approximation of the non-diagonalizable highly-damped com-

plex modes.

2.2 Blind source separation (BSS)
2.2.1 The BSS problem

The linear instantaneous BSS model [65] is expressed as
x(t) = As(t) = > as(t) (2.1)
i=1

where x(t) = [21(t), ..., x; (t)]T is the observed mixture vector with m mixture signals,
and s(t) = [s1(t),...,5,(t)]T is the latten source vector with n sources; A is the
unknown constant mixing matrix consisting of n columns with its ¢th column a;
associated with s;(t). Assume m = n, i.e., A is square such that A € R™"™ and
a; € R™. Note that the overdetermined case can always be cast into the square one
using the preprocessing technique principle component analysis (PCA) to reduce the
dimension; whereas the underdetermined case m < n, i.e., the available sensors are
less than the sources, is not considered in this study. With only x(¢) known, Eq. (21
may not be mathematically solved. To alleviate the problem, most BSS techniques
exert little assumption that the sources s(t) are statistically independent at each time
instant t; surprisingly, it suffices to recover the sources and the mixing matrix in most
practical applications [65].

As the most popular technique to solve the BSS problem, ICA [65] treats the sig-
nals as random variables; it estimates the sources by the recovered components which
are as non-gaussian as possible, i.e., the temporal structure of signals is ignored and

onlythednformation of their (high-order) statistical distribution are used. Although
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such a learning rule by ICA is proven powerful and efficient in many applications,
it has also been pointed out that ICA may fail when the sources possess significant
temporal structures [63][129]. On the other hand, SOBI only uses the second-order
statistics of signals and makes assumption of stationary sources and known noise
distribution (stationary temporally white) [I3], which may hinder its capability in

practice.

2.2.2 Stone’s theorem for BSS

A novel learning algorithm for the BSS problem, CP [63][129][130], has been pro-
posed to address the drawback of ICA; it explicitly explores the significant temporal
structure hidden in the signals and can recover even the Gaussian sources that ICA is
incapable of handling. Stone [129] proposed an efficient CP scheme based on a con-
jecture that exploits the mechanism underwriting the generation of a source signal;
that is, possible source in the physical system is generated by the motion of mass over
time governed by certain physical law. As such, the observed mixtures must consist
of simpler sources, each of which is generated by a different governing law.

Xie et al. [I40] theoretically proved that the complexity of any mixture always
lies between the simplest and the most complex constituent sources; it is currently
termed as Stone’s theorem. Based on this basis, the least complex signal extracted
from a set of mixtures is guaranteed to be a source signal. Specifically, CP seeks a

de-mixing (row) vector w; such that the recovered component y;(t)

yi(t) = w;x(t) (2.2)

yields least complexity and thus approaches the (simplest) source signal.
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2.2.3 Measuring signal complexity by temporal predictability

In statistics, the complexity of a signal, say, y; (the temporal index ¢ is made implicit),
is rigorously measured by Kolmogorov complexity. Given that Kolmogorov complex-
ity is not intuitive and difficult to approximate in practice, Stone [129] provided a
simple yet robust complexity measure of a signal, temporal predictability, which is

defined by
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where the long-term predictor 7,;(¢) and short-term predictor ¢;(t) are given, respec-

tively, by

7)) = Ayt -1+ (1= Ayt —1) 0< A <1

(2.4)
0i(t) = Asyi(t = 1)+ (1= Ag)yi(t —1) 0< Ag <1
The parameter X is defined by the half-life parameter h as
A=27"h (2.5)

where hg = 1 and hy, is arbitrarily set (say, 900000) as long as hy > hg [129].

Note that V(-) measures the verall variability [129] of y;(t), described by the
prediction error of a long-term moving average y,(t); it generally characterizes the
global statistical information of y;(t). On the other hand, U(-) measures the local
smoothness [128] of y;(t), by exploiting the temporal structure of y;(t) using a pre-
dicting short-term moving average ¢;(t). Thus, the temporal predictability operator
F(-), which is used as the contrast function of CP, explicitly incorporates the statis-
tical and temporal information of y;(¢) by using the ratio of these two terms; it is

constrained o searchfor the most predicted component which possesses small local
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variance (smoothness) as compared to its global (long-term) variance. It turns out
useful in extracting sources with proper temporal structure.

An example is presented here to illustrate Stone’s theorem with the signal com-
plexity measured by temporal predictability F(-). Five zero-mean sinusoids with ran-
dom variance and different frequencies (Fig. [L14] and Table 2.1]) are used as source
signals, which are mixed by a normal-distributed random mixing matrix, yielding
five mixtures. The sampling frequency is set at 100 Hz and with a time history of
1000 seconds. The predictability of the sources and mixtures are computed using
Eq. (Z3). Due to randomness of the signal variance and mixing matrix, the pro-
cedures are repeated 100 times. For illustrations, the result for one run is listed in
Table 2.1l Obviously the predictability of all the five mixtures lies between the most
predicted source 1 (simplest) and least predictable source 5 (most complex), which
exactly follows Stone’s theorem. The results from other 99 runs also indicate the
validity of Stone’s theorem, but they are not presented here.

Another interesting point noted is that lower frequency signal has higher pre-
dictability, regardless of signal variance. This result is quite straightforward to un-
derstand; for example, a signal with a constant value (zero frequency) is obviously
most predictable among others. Also note that the conclusion holds for signals with
arbitrary variance, since the predictability measure has naturally incorporated the

(global) variance term.

2.2.4 Stone’s algorithm performing CP

Incorporate Eq. (22) into Eq. (23)),

V(w;, X) w;Rw!
Fy:) = F(wi, x) = log i X) o0 WitWi 2.6
(1) = Ko, ) = log L] = o M 20
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Table 2.1 : Predictability of the sources and mixtures.

Source Frequency Predictability Mixture Predictability

1 0.1 1.4823 1 1.0057
2 1 1.3528 2 0.8972
3 T 1.1053 3 0.5768
4 V15 0.9752 4 0.6172
5 10 0.2306 5 0.9452

where R and R are the n x n long-term and short-term covariance matrix between

the mixtures, respectively; their elements are defined as
N

Tij = 2 (@i(t) — (1)) (x;(t) — 7;(t))
=i (2.7)

Fig = 24 (wa(t) — 2a(4)) (2 () — 25(1))

The covariance matrices can be computed by fast convolution operations [17][129).
Therefore, given a set of mixtures x(¢), the CP learning rule is formulated to search
for the de-mixing vector w; which maximizes the temporal predictability contrast
function F(+); this can be solved by the classic gradient ascent technique as described
in the following.

Following Eq. (2.6)), the derivative of F with respect to w; is

Wi 2W
ViR - ViR (2.8)

Vo F =
F=3t7

By iteratively updating w;, a maximum of F is guaranteed to be found; the
extracted component y; = w;x with maximum temporal predictability is the least
complex signal, and thus approaches the simplest source hidden in the mixtures,

according to Stone’s theorem in the CP learning rule.
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Restricted to Stone’s theorem, however, only the simplest source can be extracted
by maximizing the temporal predictability using the gradient ascent technique. For-
tunately, such ambiguity can be easily resolved by the deflation scheme. Thereby, the
sources can be subsequently extracted: after one source (the currently simplest one)
is extracted, it is “removed” from the mixtures using a Gram-Schmidt de-correlation
technique [129]; the second simplest source then becomes the simplest one in the
remaining mixtures and can thus be extracted by CP, and so on. Stone [129] pro-
posed a more elegant algorithm that can efficiently extract all the hidden sources
simultaneously, described as follows.

The gradient of F reaches zero in the solution, where

2W,’— 2Wz ~
Vw,F = R — R=0 2.9
FoR- (2:9)
Rewriting as
w;R = %Wif{ (2.10)

yields a well-defined generalized eigenproblem [I7][129]; the solution for w; can thus
be obtained as the eigenvector of the matrix R 'R, with the eigenvalue v; = V;/U;.

The sources can then be efficiently extracted simultaneously by
s(t) = y(t) = Wx(t) (2.11)

where the eigenvector matrix W, with w; as its ¢th row, is the target de-mixing
matrix such that A = W= and y(t) = [y1(¢), ..., yn(t)]? is the recovered component
vector which approaches the source vector s(t).

It should be mentioned that W (also A) is real-valued, since both R and R
are symmetric. However, it does not undermine the capability of the CP algorithm,

which provides,excellent performance in identifying modal information of structures
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even with complex modes, detailed in later sections. Also note that CP and other
BSS methods are inherently incapable of identifying the order (sequence) and the
variance of the sources and the mixing matrix [65]; yet this turns out trivial in modal

identification, as will be discussed in section 2.3.2]

2.3 Complexity pursuit on modal coordinates

The CP learning rule lays its foundation on the observation that statistically inde-
pendent sources hidden in the observed mixtures generally originate from the motion
of mass over time, each is independently governed by some physical law. It is particu-
larly suitable to describe system motions and can be cast into the modal identification

framework.

2.3.1 “Physical systems” on modal coordinates

For a linear time-invariant system, its equation of motion (EOM) is
Mx(t) + Cx(t) + Kx(t) = f(¢) (2.12)

where M, C , and K are constant mass, diagonalizable damping, and stiffness matri-
ces, respectively, and are real-valued and symmetric; x(t) = [z1(t), ..., z,(t)]? is the
system response (displacement) vector and f(t) is the external force vector.

Feeding the observed system responses x(¢) as mixtures into the BSS model with
the CP learning rule, x(¢) must (linearly) consist of simple source signals indepen-
dently driven by some physical law. Such a viewpoint coincides with the modal
identification issue, which expands the coupled system responses x(t) as linear com-

binations of the decoupled modal responses, similar to the BSS model Eq. (2.I]),

x(t) = @q(t) = > ¢uailt) (2.13)
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where ® € R"*" is the normal vibration mode basis matrix with its 7th column
(modeshape) associated with the ith modal response ¢;(¢) in the modal response

vector q(t) = [q1(t), ..., ¢.(t)]* , which can be recovered by
q(t) = & 'x(t) (2.14)

The main virtue of using modal expansion to characterize the motion of system
(2.12)) is that the vibration mode matrix provides a complete basis set for the space

spanned by the linear system Eq. (ZI2) and is thus able to decouple the system
Eq. (ZI2). Substituting Eq. (ZI3) into Eq. (2.I12) and pre-multiplying both sides of
Eq. 212) by @7,

PTMPG(t) + PTCP(t) + PTKPq(t) = DTf(t) (2.15)
yielding
STMPE(t) + PTCP(t) + PTKPq(t) = BTf(t) (2.16)

where M* | C* | and K* are, respectively, the diagonal real-valued modal mass,
damping, and stiffness matrices; £*(¢) is the modal force vector. The n-DOF system
(12) is thus decoupled into n single-degree-of-freedom (SDOF) systems, each motion

¢i(t) (at the ith mode, i = 1,...,n) is governed by
m;Gi(t) + ¢ qi(t) + ki qi(t) = f7'(t) (2.17)

whose damping ratio and resonant (damped) frequency are (; = ¢ / 2\/mik} and

wai = win/1—C = /(1 — 2)k;/m; (w; is the natural frequency of the ith mode),
respectively. The fundamental idea of the proposed CP method lies in the observation
that the “physical system” Eq. (2.I7)) underwrites the motion of the ith modal mass

overtime (i-emthedecoupled SDOF system motion on the ith modal coordinate ¢;(t));
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the generation mechanism of this modal response well matches Stone’s theorem such
that it can be viewed as the constituent source targeted by the CP learning rule, and

the mode matrix ® combining n modal responses corresponds to the mixing matrix

of the CP based BSS model.

2.3.2 CP for modal identification

With the connection established between the modal responses (and the mode matrix)
and constituent sources (and the mixing matrix) in the CP learning rule through the
“physical systems” living on the modal coordinates, the only requirement is that
modal responses be statistically independent, which corresponds to the general as-
sumption by most BSS techniques (e.g., ICA, SOBI, CP, etc).

It has been shown in Ref. [74] that modal responses can be viewed as statisti-
cally independent sources if their oscillating frequencies are incommensurable (e.g.,
the ratio between two frequencies is irrational). A generalization of this conclusion is
proposed in the CP framework that, if the “physical systems” on modal coordinates
have incommensurable inherent resonant frequencies (i.e., w; and w; are incommen-
surable for any i¢,5 = 1,...,n,i # j), they then function as statistically independent
systems, generating independent modal responses that dominate the system responses
in respond to the initial conditions (e.g., impact force in free vibration) or random
excitation (in ambient vibration), or others provided that they are not monotone (or
narrow-band) harmonic force. Such assumptions are naturally satisfied in the modal
identification issue in practice. On the one hand, most systems in practice have in-
commensurable resonant frequencies. On the other hand, two fundamental excitation
types, namely impact excitation (free vibration) and random excitation (e.g., white

noise), are expected to induce the modal responses (i.e., those vibrating at the res-
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onant frequencies) that dominate the system responses, which may additionally be
accompanied, though, by other non-resonant vibrations and measurement noise in
practice. Therefore, in most practical applications, the CP method guarantees to
extract modal responses directly from the system responses in both free and ambient
vibrations, regardless of the level of damping and the topology of the modes (e.g.,
whether separated or close-spaced).

In free vibration f(¢) = 0, modal responses are exponentially decaying sinusoids,

and the motion of the ith modal mass governed by Eq. (2I8) can be written as

qi(t) = e cos(wyt + 6;) (2.18)
and the system responses are linear combinations of these modal responses, expressed
as

x(t) = Z P, qi(t) = Z pue” i cos(weit + 0;) (2.19)
i=1

i=1

where u; and 6; are some constants determined by initial conditions.

In random excitation, the resonant vibrations (modal responses) dominate the
system responses [74]. Compared to the free vibration of the decoupled SDOF in
form of exponentially decaying sinusoid, the random vibration at the ith mode is
characterized by an envelope function e;(t), randomly modulating the exponentially

decaying sinusoid,
Gi(t) = es(t)ue™5" cos(weit + 0;) (2.20)
and the system responses are written as

x(t) = Z p,qi(t) = Z @,ei(t)ue ™" cos(weit + 0;) (2.21)
i=1

=1

Note that the random excitation need not to be white-noise type (although this

ispone of thesideal situations) as assumed by a few traditional modal identification
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methods (e.g., NExT); the CP method holds validity as long as the excited modal
responses dominate the system responses, since the formulations of the output-only
CP method as per Eq. (Z12) to ([221]) assumes no knowledge with respect to the
explicit distribution of the excitation. Also, the formulations use the displacement
as the system responses, yet they can also apply to other types of system responses
(e.g., velocity, acceleration, or strain).

In the case of non-diagonalizable damping (damping matrix may not be diago-
nalized by the normal mode matrix), Eq. (Z.12) may not be directly decoupled by
®. Still, the system (2I2) can be decoupled into (ZI7) in the state-space by the
vibration mode matrix ®. which is complex-valued in such a case, as well as the
modal responses q.(t). Besides, the inherent resonant frequency and damping prop-
erty of the “physical system” on the modal coordinate remain invariant, such that
the validity of the proposed CP algorithm for modal identification holds. The formu-
lations of modal responses and system responses in this case are analogous to those
of proportional damping as per Eq. (2.18)) to (2.21))), and not presented herein.

Therefore, using Stone’s CP algorithm based on temporal predictability as de-
tailed above, the time-domain modal responses q(t), which are the constituent sources
hidden in the system motion mixtures x(t), can be efficiently extracted by CP simul-

taneously,
q(t) = s(t) = Wx(t) (2.22)
and the vibration mode matrix can be estimated by
=W (2.23)

The frequency and damping ratio can be readily computed from the recovered time-

domain modalresponsc q(t) using Fourier transform (FT) and logarithm-decrement

www.manaraa.com



43

technique (LT), respectively.

As mentioned at the end of Section 2.2.2] CP and other BSS methods may not
recover the exact order and variance of the modal responses and their associated
modeshapes (the columns of the mixing matrix). This is easily resolved, however:
the mode order can be rearranged according the frequency values, e.g., the recovered
modal response (as well as its associated modeshape vector) with smallest frequency
is recognized as the 1st mode, and so on. Also, the frequency and damping ratio are
not dependent on the variance of the modal response, and only the directions of the

recovered modeshape vectors are needed to decouple the system responses [145].

2.4 Numerical simulations

To validate the proposed CP modal identification method, numerical simulations are
conducted on a three-DOF linear time-invariant spring-mass damped model (Fig. 2.1])
(a 12-DOF system example is presented in Section [2.4.5]).

Different system parameters are set to address several issues in modal identi-
fication, namely well-separated modes, closely-spaced modes, and complex modes,
respectively, in both lightly- and highly- damped system. In each case, free vibration
and random vibrations are studied, respectively. Both stationary and non-stationary
random vibrations are considered. Stationary random excitation uses Gaussian white
noise (GWN), whereas non-stationary random excitation is generated by modulating
the GWN with an exponentially decaying function at a constant rate. Newmark-Beta
algorithm is used to obtain the time histories of the system responses with a sampling
frequency of 10 Hz.

In the following, the procedures of the CP method are carried out on the obtained

system responses. The long-term and short-term half-life parameters are set to be
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k1 k12 ka3 k3

Figure 2.1 : The 3-DOF linear spring-mass damped system

hr, = 900000 and hg = 1, respectively, where hg = 1 is a fixed setting and h;, = 900000
is arbitrary as long as hy, > hg [129] (these parameters remain unchanged for all the
examples). In the following, the long-term and short-term covariance matrices are
computed using the fast convolution filter. Eigen-decomposition is then conducted
on the obtained covariance matrices, yielding the eigenvector matrix as the de-mixing
matrix. The vibration mode matrix is estimated by Eq. (2.23), and the time-domain
modal responses are recovered by Eq. ([222)) such that the frequency and damping
ratio can be calculated in a straightforward way by FT and LT [96], respectively. The
correlation between the estimated mode ¢, and the theoretical mode ¢; is evaluated

by the modal assurance criterion (MAC), defined as

MAC(@,, ) — 2o 2’ (2.24)
(Sai : Soi)(SOiT : Soi)

ranging from 0 to 1, where 0 means no correlation and 1 indicates perfect correlation.
Note that estimation of the damping ratio in random vibration needs additional infor-
mation with respect to the system or preprocessing technique (e.g., random decrement

or NExT), and this is not conducted in this study.
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2.4.1 Proportional damping

For convenient comparison, the following parameters are borrowed from Kerschen et

al. [74] and set to the system (Fig. 2] for the proportional damping case,

2 0 0 2 -1 0 2 00
M=]010 K=|_-1 2 -1 C=aM=a|0 1 0| (225
003 0 -1 2 003

Three values a = 0.01 , 0.05 , and 0.13 are considered corresponding to different

T
damping levels. In free vibration, f(¢) = 0, with initial condition x(0) = [ 010 }

and x(0) = [ 00 1 }T. For random vibration, stationary GWN and non-stationary
WN are used to excite the system at the 2nd and 3rd DOFs, respectively.

The identified results by the CP method are compared with the theoretical results
as shown in Table 2.2] and Clearly the identified frequency, damping ratio, and
vibration modes are in excellent agreement with those theoretical results, regardless
of the levels of damping and excitation types. As shown in Fig. 2.2] the MAC values
of the identification (« = 0.01) remain very high with different sample (window)
lengths of the time histories of the system responses: all are above 0.99 (except when
the sample length reduces to 10 seconds, but it has been less than the period of the 1st
mode 1/0.0895 = 11.1732 seconds); it indicates that the accuracy of the CP method
is insensitive to the sample length.

Also presented in Fig. 2.3 to Fig. are the case of & = 0.05 with system re-
sponses in free vibration, and the recovered modal responses in free vibration, sta-
tionary random vibration, and non-stationary vibration, respectively, as well as their
power spectral density (PSD). To show the original results by CP, the sequence of

the recovered modal responses depicted within each case is not rearranged (e.g., in
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Fig. 2.4 Modal Response 1 merely means the first recovered one by CP, not implying
Mode #1), but this trivial issue can be easily solved by what is mentioned at the end
of Section 2.3.21 It is observed that the multi-component system responses are well
separated into monotone modal responses. In free vibration, the recovered modal
responses match the desired exponentially decaying sinusoids. Note that ICA fails

when a > 0.01, as shown in Ref. [74].

2.4.2 Noise effects

To investigate the robustness of the CP method, zero-mean GWN is added to the
system responses (Section 2Z4.T]) with a 10% (with respect to the original signal) RMS
(root-mean-square operator of a signal) noise level. The procedures of the CP method
are then performed on the noise-contaminated system responses. For conciseness, only
the identification results of & = 0.05 in free vibration is given in Table 2.4l It is seen
that the identification results are rarely affected by the noisy data (other cases with
different damping levels and excitation types also indicate similar accuracy), i.e., the

CP method is robust in the noisy environment also.

2.4.3 Closely-spaced modes

This section considers the closely-spaced mode case. The model with diagonalizable
damping matrix in McNeill et al. [93] is modified to yield a similar form of the model

in proportional damping matrix, as

100 5 -1 0 100
M=1]020 K=|-1 4 -3 C=aM=a|0 2 0 |(226)
001 0 —3 35 00 1

All the parameters are set the same as the above sections, except that the initial
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Table 2.2 : Results of free vibration (proportional damping well-separated modes)

Frequency (Hz) Damping ratio (%)

Mode 1 2 3 1 2 3

a=0.01 Exact 0.0895 0.1458 0.2522 0.8887 0.5460 0.3155
CP  0.0879 0.1465 0.2539 0.8822 0.5691 0.3116
a=0.05 Exact 0.0895 0.1458 0.2522 4.4437 2.7299 1.5775
CP  0.0879 0.1465 0.2539 4.4493 2.8233 1.5248
a=0.13 Exact 0.0895 0.1458 0.2522 11.5537 7.0977 4.1015

CP  0.0879 0.1465 0.2539 11.4167 7.3448 3.9240

Table 2.3 : MAC results in proportional damping cases (well-separated modes)
Q@ Free vibration Stationary GWN Non-Stat. GWN

Mode 1 2 3 1 2 3 1 2 3

0.01  0.9999 0.9999 0.9998 1.0000 0.9998 0.9998 1.0000 0.9987 1.0000
0.05 0.9990 0.9993 0.9975 1.0000 0.9962 0.9998 0.9998 0.9977 0.9981
0.13  0.9929 0.9816 0.9876 0.9990 0.9916 0.9996 0.9996 0.9977 0.9873

Table 2.4 : CP Identification in noisy free-vibration (10% RMS noise, o = 0.05)

Frequency (Hz) Damping ratio (%)
MAC
Mode Theoretical Identified Theoretical Identified
1 0.0895 0.0879 4.4437 4.2058  0.9997
2 0.1458 0.1465 2.7299 2.8200 0.9516
3 0.2522 0.2539 1.5775 1.5454  0.9963
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Figure 2.2 : The MAC values from the identification results by CP with different
sample lengths of the system responses of the 3-DOF system (proportional damping
with well-separated modes, a = 0.01).

System Responses PSD
2 20
g0 210
o c
-2 0
0 50 100 150 0 0.5 1
2 40
™ =
g0 £ 20
: < L
2 0
0 50 100 150 0 0.5 1
2 40
© v
g0 £ 20
° U
-2 0
0 50 100 150 0 0.5 1
Time (sec) Frequency (Hz)

Figure 2.3 : The system responses in free vibration (proportional damping with well-
separated modes, o = 0.05).
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Figure 2.4 : The modal responses recovered by CP in free vibration (proportional
damping with well-separated modes, oo = 0.05).

T

conditions used in free vibration are x(0) = [ 00 0 ]T and x(0) = [ 00 1 ]
The identification results are shown in Table and [2.0] which indicate that the CP
method provides fairly accurate modal identification of structures with closely-spaced
modes in all cases. Fig. to Fig. 2.7 give an example of identifying highly-damped
system (o = 0.13) with close modes in free vibration. It is shown in Fig. 2.0 that the
2nd and 3rd modes are very closely-spaced and rarely distinguished in the PSD of the
system responses; still, they are completely separated by the CP method as shown in
Fig. 271 On the other hand, as shown in Ref. [93], SOBI is incapable of identifying

the close modes of this similar model.
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Estimated Modal Responses PSD
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Figure 2.5 : The modal responses recovered by CP in stationary random vibration
(proportional damping with well-separated modes, o = 0.05).

Table 2.5 : Results of free vibration in closely-spaced modes cases

Frequency (Hz) Damping ratio (%)

Mode 1 2 3 1 2 3

a=0.01 Exact 0.1039 0.3425 0.3713 0.7656 0.2324 0.2143
CP 0.1074 0.3418 0.3711 0.7667 0.2314 0.2030
a=0.05 Exact 0.1039 0.3425 0.3713 3.8279 1.1618 1.0715
CP  0.1074 0.3418 0.3711 3.8199 1.1434 1.0151
a=0.13 Exact 0.1039 0.3425 0.3713 9.9526 3.0208 2.7860
CP  0.1074 0.3418 0.3711 9.9770 2.9906 2.7274
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Table 2.6 : MAC results in closely-space mode cases

Q@ Free vibration Stationary GWN Non-Stat. GWN

Mode 1 2 3 1 2 3 1 2 3

0.01 1.0000 0.9999 0.9998 0.9999 1.0000 0.9996 1.0000 1.0000 0.9990
0.05 1.0000 0.9971 0.9999 0.9999 1.0000 0.9991 1.0000 0.9973 0.9963
0.13 1.0000 0.9735 0.9759 0.9998 0.9999 1.0000 0.9999 0.9765 0.9914
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Figure 2.6 : The system responses in free vibration (closely-spaced modes, o = 0.13

).

2.4.4 Non-diagonalizable high damping

This section investigates a more general situation of non-proportional (non-diagonalizable)

damping. The damping matrix of the model from McNeill et al. [93] is slightly mod-
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Figure 2.7 : The modal responses recovered by CP in free vibration (closely-spaced
modes, o = 0.13 ).

ified to obtain a non-diagonalizable high-damping example as follows.

300 4 -2 0 0.3856  0.2290 —0.9702
M=110 20 K=|_-2 4 -2 C=1 02290 0.5080 —0.0297
00 1 0 —2 10 —0.9702 —0.0297 0.3241
(2.27)

Complex modes result in this case. Since the CP method gives real-valued de-mixing
matrix, the theoretical complex modes are transformed into real modes using the
standard method described in Ref. [03], such that the accuracy of the identified
vibration mode matrix (modeshapes) can be evaluated using Eq. ([224]). The iden-
tification results are listed on Table 2.7 and 2.8 also shown in Fig. 2.8 It is seen

that the identified modal parameters agrees fairly well with those theoretical results,

ing th § P method suffers little in the presence of the non-proportional
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high damping and provides excellent approximation to the complex modes in both
free and random vibration. On contrary, it is noticed in Ref. [93] that SOBI loses
accuracy even in the light damping case of this non-diagonalizable damped model,

and the modified SOBI method only addresses the lightly-complex modes.

Table 2.7 : Identified results of free vibration in non-proportional high damping

Frequency (Hz) Damping ratio (%)
MAC
Mode Theoretical Identified Theoretical Identified
1 0.1343 0.1367 10.8998 10.9694  0.9843
2 0.2454 0.2441 6.8853 6.7217  0.9510
3 0.5094 0.4980 4.8%27 4.6758  0.9823

Table 2.8 : MAC results in random vibration (non-proportional high damping)

Stationary GWN Non-stationary WN

Mode 1 2 3 1 2 3

MAC 0.9974 0.9991 0.9894 0.9978 0.9916 0.9892

2.4.5 Identification of a 12-DOF system & comparing to SOBI

To show that the CP method is suitable for large-scale structures with more DOFs,
a 12-DOF system (Fig. 2.9]) is set up (larger system can also be built), i.e., m; =
22mo=..=my=1mp =3, ki =ky=..=kiz=1, and C=aM with a = 0.03.
The first four natural frequencies of the structure are 0.0378, 0.0716, 0.0990, 0.1250
Hz, respectively. Impact or Gaussian white noise excitation is induced at the 6th DOF

(mass)rand.the200-second system responses are used with a sampling frequency of 10
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Figure 2.8 : The modal responses recovered by CP in free vibration (non-proportional
high damping case).

Hz. Both the CP method and SOBI method are performed directly on the measured
system responses.

For the CP method, hg = 1 is a fixed setting, and hj, > hg is required. The MAC
results using a wide range of values of hy between 100 and 900, 000 are presented in
Fig. 211l as well as the corresponding computational time. For random vibration,
the results are averaged over 100 tests.

It is seen both for free or random vibration, the MAC values are very high and
the computational time is quite little, both of which remain stable with varying
hr, values, indicating that CP efficiently provides reliable modal parameters without
adjusting the parameters. Note that the lower MAC of the 11th mode (shown as
green star marker in Fig. 2Z.TT]) is because it is not well excited, as it is rarely present

in th esponses. The frequency and damping ratio can also be accurately
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identified from the simultaneously recovered time-domain modal responses; they are
not presented here, however.

Comparisons with SOBI are also conducted on the same set of structural responses,
and its performance with different lag parameters is shown in Fig. .11l It is seen that
SOBI’s accuracy depends on the lags, and the computational time increases linearly
with increasing lags. Table lists some of the MAC results by CP and compared

with SOBI method.

k1 ko k12 k13

m AN me JAAA— - - AN

Figure 2.9 : The 12-DOF linear mass-spring damped model

2.4.6 Identification of a distributed-parameter beam

This section considers applying CP to identify a two-dimensional distributed-parameter
fixed beam model (Fig. [212). The parameters of the beam are set similar with those
presented in Kerschen et al. [74]: the Young’s module is 200 GPa, the density is 7800
kg/m?, the cross section dimension is 0.014 x 0.014 m, the length of the beam is 0.7
m, and the damping matrix is set C =2-M+2 x 107%- K. The beam is modeled by
finite element method, divided into seven elements, and each node has three DOF's:
axial, vertical, and rotational, resulting in n = 3 x 6 = 18 DOF's of the structure. The
first four natural frequency of the structure are 148.74, 410.38, 806.85, and 1342.12
Hz. A vertical velocity is induced in the 2nd node and the structural responses are

computed/recorded only at m = 6 (vertical) sensors with a sampling frequency of
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Table 2.9 : Identification results of MAC by SOBI and CP of the 12-DOF structure
(hr =900, 000).

Free vibration Random vibration

SOBI SOBI SOBI SOBI

Mode CPp CP
(20 lags) (50 lags) (200 lags) (200 lags)
1 1.0000 0.9999 1.0000  1.0000  0.9995  1.0000
2 0.9900 0.9092 0.9935  0.9991  0.8641  0.9822
3 0.9965 0.9840 0.9987  0.9993  0.9718  0.9945
4 0.9926 0.9768 0.9981  0.9993  0.9699  0.9915
5 0.9897 0.9862 0.9982  0.9996  0.9776  0.9882
6 0.9865 0.9918 0.9992  0.9995  0.9843  0.9900
7 0.9708 0.9933 0.9982  0.9987  0.9671  0.9970
8 0.9822 0.9967 0.9993  0.9991  0.9843  0.9847
9 0.9150 0.9778 0.9939  0.9919  0.9098  0.9833
10 0.9891 0.9943 0.9985  0.9987  0.9780  0.9922
11 0.6541 0.6724 0.7988  0.6706  0.5322  0.4130
12 0.9970 0.9981 0.9990  0.9993  0.9839  0.9984
Computational
0.0427 0.0731 0.1256  0.0047  0.1684  0.0028
time (sec)

10,000 Hz. The time history is recorded for one second.
CP extracts 6 modes from the structural responses. Table 2.10 shows that the CP
modes match the theoretical modeshapes very well. It is seen that SOBI also provides

reasonable identification, but the lag parameter affects the accuracy of SOBI. CP

yields good accuracy and computational efficiency.
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Table 2.10 : MAC results by SOBI and CP of the beam model in free vibration.

SOBI SOBI SOBI SOBI Cp
Mode
(20 lags) (50 lags) (200 lags) (900 lags) (hr = 900,000)
1 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 0.9999 1.0000 1.0000
3 1.0000 0.9996 0.9994 1.0000 1.0000
4 0.9607 0.7555 0.7836 0.9842 0.9980
) 0.9939 0.9881 0.9809 0.9985 0.9993
6 0.9828 0.9663 0.9160 0.9972 0.9992
Computational
0.3891 0.9050 3.4754 15.1780 0.1607
time (sec)

2.5 Experimental verification

A three-story steel frame model (Fig. is built to experimentally investigate the
capability of the CP modal identification method. The structural model is dominated
by the masses on each floor, which are framed by two steel columns. The base of the
model is fixed on the shaking table, which is controlled by a feedback control system.
Accelerometers are attached on top of the masses to record the system responses.
Band-limited white noise excitation is generated at the base by the shaking table,
and the measured responses are recorded by the National Instrument data acquisition
system. The original sampling frequency is set 5128 Hz.

For more efficient computation, the measured data are down-sampled by a factor
of 128, and then the CP method is directly applied on the data without additional

preprocessing. The measured system responses and recovered modal responses are de-
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picted in Fig. 2214l to Fig. .15 which clearly indicate that the coupled random system
responses are completely separated into three mono-component modal responses.

The classic peak-picking (PP) method is also implemented to identify modal in-
formation of the system; it uses both the input excitation and output information.
In this method, the chirp sinusoid wave is applied to excite the system at the base;
besides, one additional accelerometer is attached on the surface of the shaking table
to record the input signal.

The identification results are summarized in Table 2211l The identified frequency
in both methods matches fairly well, and the high MAC values in all the three
modes indicate high correlation of the mode shapes identified by the two methods
(Fig.[2.13(b)). While giving comparable accuracy with the input-output PP method,
the CP method needs no input excitation information; such an advantage is attractive
in applications when the excitation is not available or extremely difficult to obtain.
Besides, the CP method is straightforward to implement with little interactions with

the users.

Table 2.11 : Experimental results

Frequency (Hz)

MAC
Mode PP CP

1 2.550  2.600 1.0000
2 7.330  7.395 0.9993

3 10.460 10.720  0.9997
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2.6 Seismic application

The proposed method is also applied on the seismic responses of the USC hospital
building (Fig. from the Northridge earthquake in 1994. It is a highly-damped
(the damping ratio of the 1st mode is as high as 14%) eight-story base-isolated nonlin-
ear system [100][98]. The base and three stories (4th, 6th, and the roof) are embedded
with sensors. A segment of the recorded seismic responses in the North-South direc-
tion from the latter three sensors (#12, 17, and 21 in Fig. are used, which is
from 15-30 second, sampled at 100 Hz.

A preliminary observation of the PSD of the system responses in Fig. P.17] shows
that only the first three modes are visible (the 3rd mode is marginally present,
though). This is quite common in the seismic responses of structures that the re-
sponses in low frequency (lower modes) are usually dominant. On the other hand,
it implies that using few sensors may be sufficient to identify the active modes of
structures subjected to the seismic excitation, such like this example.

The identified results by the CP method are listed in Table .12 as well as the
recovered modal responses shown in Fig. 2.I8 Note that a 3D analytical model has
been previously developed [100] such that analytical results are available as reference
for comparison. As can be seen, the results by the CP method satisfactorily match the
analytical results in both the frequency and mode shape identification (Fig. [2.16(b)).
Compared with the first two identified modeshapes with high MAC values, the lower
MAC value in the 3rd mode is primarily because it is not reasonably excited out.
This is seen from the PSD of the system responses (Fig. 2Z17) that the 3rd mode is
rarely present, while the first two modes are quite active. It is on the other hand
a generic requirement for output-only methods (even input-output ones) that the

modes be reasonably excited out. This is also discussed in the time-frequency ICA
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method [145] proposed by the authors, where the identified 3rd modeshape does not

quite match the analytical one.

Table 2.12 : Identification of the USC hospital building

Frequency (Hz)

MAC
Mode Analytical CP
1 0.746 0.768 0.9751
2 1.786 1.907  0.9054
3 3.704 3.941 0.7874

2.7 Summary

This chapter presents a new time-domain output-only modal identification method
using the novel BSS learning rule CP by exploiting the signal property itself of the
available system responses and the underlying modal responses. Stone’s theorem for
CP is investigated in detail and found to be particularly suitable for modal iden-
tification using the proposed concept of independent “physical systems” on modal
coordinates.

The CP method is illustrated with numerical simulations to address modal iden-
tification for both proportional damped (well-separated and closely-spaced modes)
and non-proportional highly-damped (complex modes) structures in free and random
vibration. In all the studied cases, CP method holds accuracy, as well as robustness
against noise contamination. In addition, the high-level damping has little influence

on the CP method; this is expected as long as the independent ”physical systems”

on modal coordinates are valid.
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The CP method is also applied to an experimental model and a real-world seismic-
excited structure, which generally possess complex modes; it provides excellent esti-
mation of the modal information of structures in practice.

Inheriting the virtues of BSS algorithms, the proposed CP method realizes blind
identification of structural modal information; it is completely unsupervised, i.e., it
needs no input excitation information or any information with respect to the struc-
ture. This advantage is evident from the experimental study where the CP method
is able to perform reliable output-only identification, as compared to the traditional
modal analysis technique which is based on input-output relationship.

The CP method has a straightforward and efficient implementation to perform
completely blind identification of modal parameters of a wide range of structures,
and it is therefore suitable for on-line identification as well as for off-line applications.
As CP assumes a square BSS model, i.e., the sensor number equals that of the active
mode number, a method addressing the problem with only limited sensors needs to

be further developed, which is the topic of the next chapter.
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Figure 2.10 : The CP performance with varying long-term parameter iy in (a) free
vibration and (b) random vibration. (The star markers are the MAC values of 12
modes using the left y-axis and the circle markers are computational time using the
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Figure 2.11 : The SOBI performance with varying lag parameters in (a) free vibration
and (b) random vibration. (The star markers are the MAC values of 12 modes using
the left y-axis and the circle markers are computational time using the right y-axis.)
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Figure 2.12 : The distributed-parameter fixed beam model with seven elements and
six vertical sensors. Each node has three DOFs.
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Figure 2.13 : (a) The experimental model; (b) the identified modeshapes by CP and
PP.
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Figure 2.14 : The measured system responses of the experimental model subject to
white noise excitation.
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Figure 2.15 : The modal responses recovered by CP of the experimental model subject
to white noise excitation.
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Figure 2.16 : (a) The USC hospital building and its sensor location; (b) the identified
modeshapes compared with the analytical ones.
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Figure 2.17 : The measured system responses of the USC hospital building in the
Northridge earthquake 1994.
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Figure 2.18 : The modal responses recovered by CP of the USC hospital building in
the Northridge earthquake 1994.

www.manaraa.com




68

Chapter 3

Sparse Clustering of Modal Expansion

Chapter [2] explores the signal complexity of the available structural responses and the
underlying modal responses and presents a data-driven output-only modal identifica-
tion method based on the complexity pursuit (CP) technique. CP (as well as other
existing BSS based methods) assumes the number of sensors equal that of the active
modes, which may not be satisfied in many applications with limited measurement
sensors; e.g., for a large-scale or complex structure, sensors may be inadequate com-
pared to the number of active modes. This chapter explicitly exploits the implicit
sparse nature of the underlying modal responses and interprets the modal expan-
sion in a sparse data-clustering perspective, thus developing a fairly straightforward
and efficient output-only modal identification method based on sparse component
analysis (SCA) [148], which is applicable for both determined and underdetermined

output-only modal identification problems with limited sensors.

3.1 SCA for modal identification

The targeted modal responses, which are viewed as sources in the BSS framework,
are monotone, implying that they are active at only one distinct frequency, respec-
tively. Therefore, they are most sparsely and disjointly distributed in the frequency
domain and naturally satisfy the source sparsity assumption of SCA [53][54]. Hence,

transform the modal expansion Eq. ([2I3) (with m sensors and n modes) into the

www.manaraa.com



69

sparse frequency domain to incorporate modal identification to the SCA framework,

x(f) = ®q(f) = Z ©.0:(f) (3.1)
with
x(f) = F(x(t)) = [ x(t)emItdt

a(f) = Fla(t)) = [Z at)e >/ dt

where F, f, and j denote the Fourier transform operator (on each z;(t) or ¢;(t)

(3.2)

separately), frequency index, and the imaginary operator, respectively. Note that F
is an invertible linear transform; it holds the form of the modal expansion such that
Eq. (31) is valid and ® remains invariant.

To avoid complex elements in Eq. (B]), it is more practical to use the cosine
transform F°¢ (also linear) to yield real-valued x(f), simply replacing the Fourier
basis e 27/t with the cosine basis cos 27 ft in Eq. (8.2). The discrete cosine transform
(DCT) is popularly used in data compression of audio (e.g., MP3) and image (e.g.,
JPEG) [I17], where it outperforms the standard discrete Fourier transform (DFT).
The DCT is adopted in the proposed SCA method, then x(f) and q(f) are understood
as real-valued cosine transform coefficients.

Using the disjoint sparsity property of modal responses with distinct frequencies,
at some fj where only one modal response ¢; (j = 1,...,n) is active and ¢; = 0 for
i # 7, Eq. (81 becomes

x(fx) = ¢;0;(fx) (3.3)
Therefore, the points of x(f) will cluster to the direction of the jth modeshape ¢;
(j =1,...,n), such that the estimated vibration mode matrix ® can be extracted by

the automatic FCM clustering algorithm [15].

For determined case (m = n), ® € R™" is square, and the time-domain modal
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responses can be recovered directly by
q(t) = @ 'x(t) (3.4)

From which the frequency and damping ratio can be estimated by straightforward
Fourier transform and logarithm decrement, respectively. In underdetermined case
(m < n), ® € R™" is rectangular. Therefore, the frequency-domain modal sources

q(f) is first recovered using the sparsity-seeking ¢;-minimization (P;), at each f € €,

(P1): a(f) =arg minflq(f)]le, subject to  @q(f) =x(f) (3.5)

where ||q(f)|l, = i la:(f)]- (P1) is a well-defined convex optimization problem
i=1

whose solution is guaranteed to be globally optimal, and can be efficiently solved by

standard linear programming techniques [24].

The /¢;-minimization, as the tightest convex relaxation of the non-convex £y-
minimization (simply counting the non-zeros of a vector, see Section [L3.1]in Chapter
), is able to find the sparsest solution with minimal ¢;-norm that explains the ob-
servations x(f) [42][20]. The validity of this strategy resides in the ability of the
¢;-minimization to recover the sparsest solution to Eq. (), which is exactly the de-
sired monotone frequency-domain modal responses since they are the sparsest solution
among all feasible solutions to Eq. (B.3]).

The advantages of using cosine transform in Eq. (8 are now evident: using
Fourier transform would otherwise render complex entries of x(f) in both Eq. (83
and Eq. (B.3). In such a case, x(f) would cluster to both real and imaginary axis,
and solving (P;) would also require implementations on both real and imaginary axis
to recover the sparse complex Fourier coefficients of the modal responses. The use of

the cosine transform on the other hand results in real-valued x(f), upon which it’s
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simpler for the clustering algorithm and (P;) to conduct and saves at least half of the
computational burden.

Using the inverse cosine transform, the time-domain modal responses can be read-
ily recovered by

at) = F(alf)) (3.6)
thereby estimating the frequency and damping ratio.

Also note that the proposed SCA method is not applicable to identify highly non-
diagonalizable damped structures, where both ® and q(f) would be highly complex.
In this situation, ¢;(fx) and the clustered direction ¢; would both be complex, which
may not be extracted directly by the clustering algorithm of SCA, thus unable to
obtain the mode matrix ®. For those with weakly-complex modes, however, SCA
may provide reasonable identification, since a real-valued constant scale difference
qj(fx) approximately holds between the weakly-complex ¢, and x(f,). Refer to [14§]

for more details.

3.2 Numerical simulations

The developed SCA is performed for modal identification. The time-domain system
responses are first windowed by the Hanning function and then transformed into the
frequency domain using DCT with 1024 samples. The mode matrix (partial in the
underdetermined case) is then obtained using the automatic clustering algorithm:
the DCT coefficients are first normalized [77] and then fed as inputs to the FCM
clustering algorithm.

With the estimated mode matrix, in the determined case, the time-domain modal
responses are directly recovered using Eq. (3.4]) to obtain the time-domain modal

responsesaHorthenderdetermined situation, the frequency-domain modal responses
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are recovered by ¢;-minimization (P;) solving 1024 underdetermined linear systems of
equations (because of a 1024-point DCT), each of which is of scale 2 x 3 (in the 3-DOF
system example) or 2x6 (in the 6-DOF system )-the computation is nevertheless fairly
efficient, as will be discussed later. Inverse DCT and multiplication of the inverse
Hanning window are then subsequently conducted on the frequency-domain modal
responses to obtain the time-domain modal responses. Due to edge effects (mostly
from windowing and its inverse operator), few samples (here 50 samples, but may be
arbitrary as long as the envelop of the recovered modal response is clear for damping
estimation) at two ends of the recovered time-domain modal responses are truncated.
Frequency and damping ratio are estimated from the time-domain modal responses
by Fourier transform and logarithm decrement, respectively. The correlation between
the estimated modeshape @, (i = 1,...,n ) and theoretical modeshape ¢, is evaluated
by the MAC (Eq. (Z24))). In underdetermined cases, the MAC indicates the accuracy

of the clustering algorithm in estimating the directions of the partial modeshapes.

3.2.1 Closely-spaced modes

To demonstrate the capability of the SCA method for identification of closely-spaced
modes, a model is set up with the following parameters borrowed from Ref. [93] for

direct comparison with the existing SOBI and the modified SOBI method,

100 5 —1 0 0.08904 —0.0084 0.0003
M=1]0 20 K=|-1 4 -3 C= 1| -0.0084 0.1301 —0.0244
00 1 0 -3 35 0.0003 —0.0244 0.0772

(3.7)

It is seen from Fig. B.I] that the 2nd and the 3rd modes are very closely-spaced.
The SCA method is performed, and the results are shown in Fig. B4 Fig.[3.2(a)
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Figure 3.1 : The free-vibration system responses (closely-spaced modes case).

shows that in the underdetermined case, the closely-spaced modeshape directions in
the scatter plot of the frequency-domain responses are still significant to distinguish,
and the SCA method is capable of accurately recovering even the closely-spaced
(2nd and 3rd) modal responses whether in determined (Fig. B3]) or underdetermined
case (Fig. B4)). Table B shows that the identified parameters match fairly well
those theoretical ones. Note that the SOBI method shows clear degradations for
identification of these close modes, as seen in Ref. [03]. Also, with comparable
accuracy, the SCA method tends to have simpler implementation than the modified
SOBI method with quite a few preprocess steps and parameters to adjust [93]; besides,

SCA can additionally handle even the underdetermined situation well.

It is known that traditional methods may meet difficulty in identification of close
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modes when noise is present. To see the robustness performance of the SCA method
in such a case, 10% RMS (SNR=20 dB) Gaussian white noise is added to the system
responses. It is seen that the dominance of the modeshape directions still holds in
the scatter plot (Fig. , and the modal responses are recovered well by the SCA
method (Fig. B.H); similar accuracy is also observed in the determined identification.
The SCA method seems to hold well in identification of the close modes in noisy
environment.

Another example is shown that the SCA method is also appropriate for identifica-
tion of closely-spaced modes coupled with high damping, where the damping matrix
in Eq. (37) is changed to C = aM, and o = 0.13. Fig. shows that the 2nd and
3rd modes are completely merged and indistinguishable in the PSD of the system re-
sponses. The identification results are presented in Table and Fig. 3.7 shows the
recovered modal responses in the underdetermined case. Clearly the SCA method has

excellent performance in identification of the closely-spaced highly-damped modes.

Table 3.1 : SCA identification of the numerical model (closely-spaced modes)

Frequency (Hz) Damping ratio (%) MAC

Mode Exact Deter- Under- Exact Deter- Under- Deter- Under-

1 0.1039 0.1074 0.1074  4.00 4.00 3.97  1.0000 1.0000
2 0.3425 0.3418 0.3418  2.00 1.88 2.23  0.9998 0.9992

3 0.3713 0.3711 0.3711  2.00 1.84 2.17 0.9991  0.9999
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Table 3.2 : SCA identification of closely-spaced highly-damped modes
Frequency (Hz) Damping ratio (%) MAC

Mode Exact Deter- Under- Exact Deter- Under- Deter- Under-

1 0.1039 0.1074 0.1074 9.95  10.00 9.96  1.0000 1.0000
2 0.3425 0.3418 0.3418  3.02 3.14 3.41  0.9999 0.9984

3 0.3713 0.3711 0.3711  2.79 2.81 2.93  0.9996 0.9999

3.2.2 A 6-DOF system example

The SCA modal identification method with the FCM clustering algorithm and ¢;-
minimization makes no assumption of the dimension (DOFs) of the system; it can be
applied to large-scale structures. For demonstration, a 6-DOF system is set up whose
parameters are similar with the 3-DOF system in Fig. 2.1} that is, m; = 2,ms =
mg=my =ms =1,mg=3,k =ky="Fky =ky =ks =ks =1, and C = aM,
a = 0.08.

After applying SCA, in determined case, the MAC values for the six modes are
0.9993, 0.9992, 0.9995, 0.9999, 0.9998, and 0.9974, respectively, and the recovered
modal responses are monotone with clear exponentially decaying envelops. In un-
derdetermined case, only the first two sensors are used to recover all the six modes.
Still, its scatter plot signifies six significant partial modeshape directions (Fig. B.§]),
and the recovered modal responses by the SCA method in the underdetermined case
are very accurate (Fig. B.9). It is worth mentioning that the method proposed in
Ref. [2] for underdetermined modal identification requires at least four sensors to re-
cover six modes and only two modes are identifiable with two sensors there, whereas

SCA recovers all the six modes using only two sensors. This is because as long as
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the solution is sparse, /;-minimization guarantees to find it even from dramatically
few observations (sensors)-in fact, larger scale (more DOFs or more active modes
present) makes the solution even sparser since the targeted modal response is always
monotone at its single active frequency.

It is also found that the FCM clustering algorithm for estimation of the mode-
shapes and the ¢;-minimization (P;) for sparse recovery in the underdetermined cases
are both very efficient. In this example, ¢;-minimization needs to solve 1024 underde-
termined linear systems of equations, each of which is of size 2 x 6; which may appear
as heavy computational burden at first sight. However, it converges at a fairly fast
rate and conducting for 1024 times costs little computational effort. This is because
(Py) is a well-defined convex optimization problem, which can be solved by the ma-
ture linear program technique at little computational expense, even for large-scale

underdetermined problem [24]-although the scale in this example (2 x 6) is not large.

3.3 Experimental verification

The developed SCA modal identification method is also validated by analysis of an
experimental model. It is a fixed-base three-story steel frame (Fig. with
dominant mass on each floor, on top of which the accelerometers are attached to
record system responses. Impact excitation is applied to induce free vibration and
the system response data are measured by the National Instrument data acquisition
system. The sample frequency is originally set at 5128 Hz.

To yield efficient computation without loss of accuracy, the measured data are first
down-sampled by a factor of 32, and the procedures of the proposed SCA method

is then performed on the data with a Hanning window length of 1024 (Fig. B.I0).

www.manaraa.com



77

Fig. depicts the scatter plots in frequency domain of the system responses in the
determined case using all three sensors as well as that using only Sensor 1 (1st floor)
and 2 (2nd floor), both revealing three significant clustered (modeshape) directions
which are estimated by the FCM clustering algorithm. Fig. B.13 and [B.14] show
that the recovered modal responses in both cases approach quite well the monotone
exponentially decaying sinusoids.

Previously the classical peak-picking (PP) method is conducted to identify this
model, as already introduced in Section of Chapter 2l The detailed identification
results are listed in Table 3.3l The identified frequencies by SCA in both determined
and underdetermined cases agree well with those by PP, and the MAC values show a
high correlation of the identified modeshapes (Fig. B.11]) by these two methods. Note
that the damping ratio is not estimated by the PP method since it requires additional
processing technique to obtain free vibration for reliable estimation. However, the
damping ratio estimated by SCA in the determined and underdetermined cases has
reasonable match.

This experimental example validates that the output-only SCA method provides
comparable accuracy with the input-output PP method, and yet has advantage
of without using input information. Also, the SCA method is automatic, non-
parametric, and completely unsupervised, capable of blindly identify modal infor-
mation directly from system responses. Comparing the underdetermined case to the
determined one, the underdetermined SCA gives equally good performance using

fewer sensor measurements; this is promising when sensors are limited.
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Table 3.3 : Identification results of the experimental model

Frequency (Hz) Damping ratio (%) MAC

Mode PP Determined Under- Determined Under- Determined Under-

1 2.55 2.66 2.66 1.12 1.04 0.9997 0.9995
2 7.33 7.51 7.51 1.08 1.03 0.9997 0.9996
3 10.46 10.80 10.80 0.68 0.67 0.9988 1.0000

3.4 Summary

This chapter exploits the sparse nature of the underlying modal responses, proposing
an SCA based method to perform output-only modal identification of linear sys-
tems, which interprets the modal expansion in a sparse data-clustering perspective.
Compared to existing BSS-based modal identification method, the developed SCA
algorithm is not only suitable for determined situation, but also capable of identify-
ing modal information when sensors may be highly limited compared to the number
of active modes, using the powerful and efficient ¢;-minimization technique for sparse
recovery.

The SCA method drops the independence assumption used by most BSS tech-
niques; instead, it presumes that sources are sparsely represented in some transformed
domain. Based on this principle, the developed SCA method reveals the essence of
modal expansion that the monotone modal responses with disjoint s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>