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ABSTRACT

Harnessing Data Structure for Health Monitoring and Assessment of Civil

Structures: Sparse Representation and Low-rank Structure

by

Yongchao Yang

Civil structures are subjected to ambient loads, natural hazards, and man-made

extreme events, which can cause deterioration, damage, and even catastrophic failure

of structures. Dense networks of sensors embedded in structures, which continuously

record structural data, make possible real-time health monitoring and diagnosis of

structures. Effectively and efficiently sensing and processing the massive sensor data,

potentially from hundreds of channels, is required to identify (update) structural

information and detect damage as early as possible to inform immediate decision-

making.

Different from traditional model-based and parametric methods that usually re-

quire intensive computation and expert attendance, this thesis explores a new data-

driven methodology towards rapid, unsupervised, and automated system identifica-

tion and damage detection of structures as well as data management by harnessing

the data structure itself. Specifically, the sparse representation and low-rank struc-

ture inherent but implicit in the multi-channel structural response data are exploited

for efficient data sensing, processing, and management in real-time health monitor-

ing and non-destructive assessment of structures. Numerical simulations, laboratory

experiments on bench-scale structures, and real-world structures examples, including
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seismically excited buildings and a super high-rise TV tower, are investigated.
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Chapter 1

Introduction

1.1 Motivation

Detecting damage of civil structures as early as possible is essential to ensure struc-

tural safety and integrity during their service subjected to various natural disasters

(e.g., earthquakes and hurricanes) and man-made extreme events (e.g., blasts and

impacts). It allows prompt maintenance and thus reduces the repair cost; in addi-

tion, timely damage information makes possible for informed decisions and immediate

actions before catastrophic failure of structures occurs. To achieve this goal, it has

recently become a common practice to embed in structures a structural health moni-

toring (SHM) system with an array of networked sensors to continuously monitor and

assess the structural performance. For example, the California Strong Motion Instru-

mentation Program (CSMIP) [37] has installed across California seismic monitoring

sensor networks in more than 600 ground motion stations as well as 200 civil struc-

tures (e.g., buildings, bridges, dams, etc). Additionally, many landmark suspension

bridges and high-rise buildings or towers have been equipped with dense networks

of sensors: the Tsing Ma Bridge (1997) in Hong Kong, the Canton Tower (2010) in

Guangzhou, the Stonecutters Bridge (2009) in Hong Kong, with more than 280, 800,

1500 sensors [108][107], respectively; other examples abound.

As such, the data-intensive issue has arisen. On the one hand, the continuously

collected sensor data provides high-resolution and multi-dimensional information of
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the structure, which is vital for identifying (updating) structural information, evaluat-

ing its health status, and detecting damage in real time. On the other, processing and

managing the overwhelmingly voluminous data continuously collected from the SHM

system requires the system identification and damage detection algorithms not only

effective, but also efficient and automated, to extract useful structural information

for on-line monitoring as well as off-line long-term performance assessment. In addi-

tion, real-time SHM and decision-making naturally requires sensing, transferring, and

managing massive SHM data sets efficiently (especially during extreme events such as

earthquakes and hurricanes), a subject which has received little attention in current

literature and SHM practice. For example, the measured (or recorded) Canton Tower

SHM data with many outliers (shown in Fig. 1.1) clearly needs to be cleansed before

it can be used for further analysis.

Figure 1.1 : The recorded ambient vibration accelerations of the Canton Tower from
12:00 am Jan. 20th, 2010 to 1:00 pm Jan. 20th, 2010. (20 channels data are shown
with different colors, available in Ref. [1].) Chapter 9 proposes a solution to efficiently
remove these outliers; compare to the denoised Fig. 9.4.
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1.2 Traditional methods and their drawbacks

1.2.1 Parametric model based methods

Vibration-based techniques, such as modal analysis, have been widely studied for

SHM. Traditional modal identification typically complies the wisdom of system iden-

tification which is based on the relationship of inputs and outputs [46][88][83]. This

corresponds to an ideal situation where excitation to the system can be controlled

or measured. For civil structures, typically large-scale, such as bridges, buildings,

dams, etc., it is extremely difficult or expensive, if not impossible, to apply con-

trollable excitation to conduct input-output modal identification; equally challenging

is the measurement of the ambient excitation (e.g., wind, traffic, etc) to structures.

Output-only modal identification methods using only the available structural response

data [110][18] are therefore needed, especially for real-time SHM.

Existing output-only modal identification algorithms, such as Ibrahim time do-

main (ITD) method [66], eigensystem realization algorithm (ERA) [68], natural ex-

citation technique (NExT) [67], stochastic subspace identification (SSI) [139], and

frequency domain decomposition (FDD) [19], are widely used to perform modal iden-

tification of civil structures [22][121][18][97][95]. Most of these methods presume a

parametric mathematical model, e.g., stochastic state-space model (with model state

matrix A ∈ R
n×n, output matrix C ∈ R

p×n, state vector x(k) ∈ R
n and out-

put y(k) ∈ R
p, and process noise (excitation) w(k) ∈ R

n and measurement noise

v(k) ∈ R
p)

x(k + 1) = Ax(k) +w(k) (1.1)

y(k) = Cx(k) + v(k) (1.2)

to characterize the structural dynamic behaviors and then fit the measured structural
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responses to the model.

Many established damage detection methods also share similar strategy with the

assumption that the structural behaviors follow a certain form of model (e.g., physi-

cal or modal model), where abnormal behavior indicates damage. Especially, modal-

based damage identification methods, which assume that a change of modal parame-

ters signifies damage, have been extensively studied (a summary review [41]). Other

parameter-dependent methods are also developed, e.g., the observer-based methods

[29], flexibility-based method [14][52], method using input error function [79].

These system identification and damage detection methods are mostly model

based and parametric; as such, they are typically computationally demanding and

require much expert attendance for parameter adjustments associated with the model

fitting process. For example, the model order problem remains a challenge, for which

using the stability chart demands exhaustive expert interference and time-consuming

computation burden: although effective for offline applications, they are not suitable

for real-time unsupervised processing of the large-scale data sets of civil structures.

On the other hand, non-parametric data-driven algorithms, which extract structural

features and performs structural assessment directly from the data, are computa-

tionally efficient and have high potential for real-time processing the massive SHM

data.

1.2.2 Data-driven approaches

Unlike traditional parametric model based methods which are derived from the (math-

ematically) assumed physical processes, data-driven approaches aim to extract the

desirable information directly from the available data, without explicit knowledge of

the (assumed) physical or dynamic model of the underlying system.
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Many signal processing based system identification and damage detection algo-

rithms that have been developed in the literature fall into this category, featuring

efficient computation and adaptive implementation, such as those based on wavelet

transform [75][125][59][55][10][56], Hilbert-Huang transform (HHT) [61][141][142], and

other time-frequency analysis techniques [96], to name a few. Successful implemen-

tations, however, require practitioners to wisely adjust the algorithm parameters; for

example, the wavelet basis and the scales need to be carefully selected in the wavelet-

based methods, and the prescription of the modal bandwidth as well as the sifting

process also influence the abilities of the HHT methods. In addition, measurement

noise also presents a challenge to their effectiveness; the popular wavelet transform

is briefly reviewed in the following and its advantages and drawbacks are shown with

an example.

The discrete wavelet transform (DWT) achieves a multi-resolution analysis of a

signal f(t) by [90][38]

vlk =
1

2l/2

∫

∞

−∞

f(t)φ∗(
t

2l
− k)dt (1.3)

wl
k =

1

2l/2

∫

∞

−∞

f(t)ψ∗(
t

2l
− k)dt (1.4)

where l and k are the scale and translation parameters, respectively, and ∗ denotes

the complex conjugate operator. v and w are the resultant approximation and detail

(wavelet) coefficients from the scaling function φ(t) and wavelet basis ψ(t), respec-

tively. Therefore, WT realizes a multi-resolution time-frequency analysis of f(t) by

decomposing it into low-frequency (approximation) and high-frequency (detail) band

at each level. At the lth scale level, the approximated component f l
a and detailed

component f l
d also retain the temporal information of f(t) and are represented, re-
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spectively, by

f l
a =

∑

k

vlkφ(
t

2l
− k) (1.5)

f l
d =

∑

k

wl
kψ(

t

2l
− k) (1.6)

If f(t) is decomposed into L levels, then it can be reconstructed by

f(t) = fL
a (t) +

L
∑

l=1

f l
d(t) (1.7)

The interesting property (e.g., pulse-like sparse feature, which is the salient signa-

ture of damage, as detailed in later Section 1.3.1 and Fig. 1.7) of f(t) may be revealed

on certain wavelet scales [90]. However, it is easily destroyed by noise; see Fig. 1.2

for example.

Many pattern recognition or classification based damage identification techniques

[16][21] belong to the supervised family of data-driven approaches. The classification-

based methods typically involve three steps: feature extraction (from data), training

(the empirical model, typically parametric), and classification (Fig. 1.3). For damage

identification, the extracted features from various predefined or reference damage

classes, including different damage locations and damage extents, are used as inputs

to train the classifiers, which can then identify the damage class of the test (unknown)

feature (representing the current state of the structure). For example, the support

vector machines (SVMs) classifier model is

f(xi) = sign(wΦ(xi) + b) (1.8)

where xi ∈ R
n is the input vector, and w ∈ R

n, Φ (mapping function), and b are

the parameters of the classifier, which are obtained by a training set of xj ∈ R
n(j =
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Figure 1.2 : The pulse-like feature hidden in a signal can be revealed in the wavelet
domain and is also easily destroyed by noise. A signal with a sampling frequency of
100 Hz f(t) = sin(2π ·1·t)+sin(2π ·1.5·t), t = 0 ∼ 10; sin(2π ·1·t)+sin(2π ·1.499·t), t =
10 ∼ 20 experiences a slight frequency transition from 1.500 Hz to 1.499 Hz at the
10th second. Although no sign of such transition can be observed from its time
history, pulse-like feature is distinguished in the wavelet-domain decomposed signal
using the db10 wavelet basis [38]. (a) It is shown as a pulse-like feature at the 10th
second in the detailed components fd(t) on all the four scales. (b) This pulse-like
feature in the wavelet domain is completely buried when f(t) is contaminated by
Gaussian white noise with a level of SNR=40 dB. ICA is capable of extracting the
buried pulse-like feature from the noisy wavelet-domain signals, as detailed in Section
1.3.4 and Fig. 1.13 and more in Chapter 4.

1, ..., q) and their associated label; the decision function sign(·) assigns the class (label)

of xi ∈ R
n. Successful examples based on SVMs are seen in [137][135][136]; others also

include those based on artificial neural networks (ANN) [154][124], nearest neighbor

[134], and Markov observers [40].

Several factors, however, could influence the performance of these classification-

based damage identification methods that are mostly dependent on the training pro-

cess of the classifiers. In the ANN-based methods, for example, the number of in-

put/output and hidden nodes in the network could affect its accuracy [154][124], and
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Parametric classifier

ANN, SVM, etc?

Training

Label

Figure 1.3 : The principle of traditional pattern recognition or classification. Ref-
erence information is used to train the parametric classifier (blue) such as artificial
neural network (ANN) and support vector machines (SVMs), which then assigns
the unknown object (black) a predefined label or class (red). The parametric train-
ing process can be time-consuming and user-involved. One may compare to the new
sparse representation classification without a parametric classifier model or a training
process (Fig. 1.8) and more explorations in Chapter 5).

the global convergence of the algorithm is not guaranteed in most cases [16]. Com-

pared to ANN, the multi-class SVM-based methods have advantages when the sample

numbers are small [21][135]; nevertheless, their success depends on the choice of the

algorithm parameters, i.e., the kernel function selection and its associated parameters

[21][137][136]. Although optimal choice may be obtained through trial and error or

optimization algorithms, and such an approach increases computational burden and

needs the skill of an experienced practitioner; hence is not preferable in many situa-

tions, e.g., in real-time monitoring, where rapid and unsupervised processing of the

large-scale data set is required.
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1.3 A new perspective

Traditional research on SHM relies on either the physical model or the use of differ-

ent signal processing techniques; this thesis shifts the focus on to harnessing the

inherent data structure itself of the structural response data to extract the desir-

able structural features and damage information, otherwise invisible, towards rapid

(even real-time), unsupervised (automated), and effective system identification, dam-

age detection, as well as massive SHM data management. Particularly, the structural

features and damage information intrinsic within the structural response data, usu-

ally large-scale in SHM, possesses sparsity nature and low-rank structure, which,

fortunately, are readily reachable by new mathematical tools.

In particular, the recent developments of sparse representation (SR) [20] and

compressed sensing (CS) [26][43], as well as the unsupervised blind source separa-

tion (BSS) [34], have presented new opportunities to develop innovative data-driven

approaches towards efficient and effective sensing, processing, managing large-scale

SHM data sets. In each of the following sections, their fundamental theories are first

reviewed, and then their implications in output-only modal identification, damage

detection, and massive data management of civil structures, which are explored in

this thesis, are briefly introduced with details in the ensuing chapters.

1.3.1 Sparse representation

In MRI [84], computer vision [138], digital camera/video [132], etc, SR and CS have

provided a new solution to sensing and processing of large-scale data sets, with recent

exploratory applications also in SHM [9][148][152][150][91][109].

To mathematically express sparsity of a signal x ∈ R
N , it is useful to define the
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ℓ0-norm [20],

‖x‖ℓ0 = #{i : xi 6= 0} (1.9)

simply counting the number of non-zeros in x. A signal x (vector) is k-sparse if it

has at most k non-zeros, i.e., ‖x‖ℓ0 ≤ k. In a more general perspective, x is said to

be k-sparse (transform sparse) in a domain Ψ with a representation α ∈ R
N

x = Ψα =
N
∑

j=1

αjψj (1.10)

if ‖x‖ℓ0 ≤ k. Ψ = [ψ1, ..., ψN ]
T ∈ R

N×N is an orthonormal basis (e.g., sinusoid,

wavelet, etc), whose jth row is ψj ∈ R
N (or C

N on Fourier basis). α ∈ R
N is the

coefficient sequence of x ∈ R
N on Ψ, whose jth element αj = 〈x, ψj〉 (inner product).

This generalization is particularly useful since, in practice, x is typically sparse in an

appropriate domain instead of its original domain. A simple example is the sinusoid,

which is sparsest (k = 1) in the frequency domain. Another example concerning

multivariate signals is shown Fig. 1.4.

It is seen that a sparse representation of signals reveals their hidden characteristics

that are otherwise implicit. The recent breakthrough in signal sensing and processing,

compressed sensing [26][43], further exploits the sparsity of signals in an appropriate

representation domain and allows exact recovery of a sparse signal, enabled by ℓ1-

minimization (‖x‖ℓ1 =
∑N

i=1 |xi|, the tightest convex relaxation of ℓ0-minimization),

from far fewer incoherent random measurements than what is suggested by the sam-

pling theorem. A simple example shown in Fig. 1.5 illustrates that ℓ1-minimization

correctly recovers the sparse signal from few random measurements, while it is not

the case for the conventional ℓ2-minimization (least square estimation).

It turns out that the structural features and damage information of interest hidden

in the structural response data are naturally sparse and can be readily revealed by



www.manaraa.com

11

(a) (b)

Figure 1.4 : Sparse representation reveals multivariate signal characteristics: three
hidden source signals, s1(t) = cos (2π · 0.3 · t), s2(t) = cos (2π · 0.7 · t), and s3(t) =

cos (2π · 1.3 · t) are mixed by a rectangular matrix A =

[

1 0.5 2
2 3 1

]

to yield two

observable mixtures x1(t) = s1(t) + 0.5s2(t) + 2s3(t), x2(t) = 2s1(t) + 3s2(t) + s3(t).
(a) In the original time domain, the scatter plot of x(t) reveals little information on
the characteristics of source signals and the mixing process. (b) As opposed, notice
that x(t) has sparse representations in frequency domain–its constituent sources are
spectrally monotone; transform x(t) into the sparse frequency domain to yield x(f) (f
is the frequency index), and the scatter plot of x(f) (x1(f) versus x2(f)) shows that
the points of x(f) (sparsely) cluster to three significant directions of the columns ofA,
which can be captured by visual inspections. The interpretation of sparse component
analysis (SCA) in output-only modal identification is covered on Chapter 3.

the mathematical tools of sparse representation. It has been the common thread

to explicitly exploit such data structure towards developing innovative data-driven

system identification and damage detection approaches in the thesis. For example,

in output-only modal identification, express the available structural responses x(t) as
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Recovering a sparse signal from its incomplete random measurement

Sequence No.

 

 

Orignal signal

ℓ1-minimization recovered
ℓ2-minimization recovered

(a)

-Minimization

-Minimization

(b)

Figure 1.5 : (a) A sparse signal α ∈ R
50 (row vector) with only one non-zero entry

is incompletely sensed by multiplying by a zero-mean and unit-variance normally
distributed mixing matrix R ∈ R

50×5, yielding an observation signal β = αR ∈ R
5

(row vector). For recovery of the underlying α from the incomplete knowledge of R
and β, ℓ1-minimization correctly recovers the original sparse signal while the minimal
least square estimation ℓ2-minimization fails; (b) The geometric illustration of ℓ1-
minimization in 3-dimensional space. The ℓ1-norm sphere (dashed red) expanding
from the origin to the three coordinates α1, α2, and α3, intersects for the first time
the constraint subspace plane αR = β, yielding the solution α⋆ with minimal ℓ1-
norm. α⋆ is seen sparsest with only one non-zero element living on the α1 axis.
On the other hand, spreading the well-known ℓ2-minimization (minimal square ℓ2-
norm solution) sphere (dashed green) unfortunately harvests a dense solution α̃ whose
energy disperses among all three axis. The rich implications of the ℓ1-minimization
sparse recovery technique are explored in Chapter 3 and Chapter 5.

modal expansion,

x(t) = Φq(t) =
n

∑

i=1

ϕiqi(t) (1.11)

The underlying modal responses q(t) are monotone–active at only one distinct frequency–

and are most sparsely and disjointly distributed in the frequency domain. Hence,

transform the modal expansion Eq. (1.11) into the sparse frequency domain,

x(f) = Φq(f) =
n

∑

i=1

ϕiqi(f) (1.12)

Then in the scatter plot of x(f), the points of x(f) that belong to qi(f) will



www.manaraa.com

13

sparsely cluster to the direction of the ith modeshape ϕi (i = 1, ..., n) (Fig. 1.6) ,

making the output-only modal identification problem fairly intuitive and efficient,

even when the sensor number is far less than that of the active modes (see Chapter

3 for more details).

Figure 1.6 : The sparse clustering of the modal expansion in the scatter plot of the
system responses in frequency domain using Sensor 1 and 2 of a 6-DOF system (more
than Chapter 3).

As another example, sparsity is naturally the salient signature of damage (see

Fig. 1.7) in the structural responses on some sparse signal representation domain,

e.g., the popular wavelet domain, which, however, is easily affected by noise as seen

in Fig. 1.2. Fortunately, the new mathematical tool, independent component analy-

sis (ICA) [64] with a learning rule towards multivariate sparse components, enables



www.manaraa.com

14

extraction of the hidden sparse signature from the noisy signals (see Section 1.3.4 for

a brief introduction and more in Chapter 4).

Figure 1.7 : Interpretation of structural damage as sparse signature in structural
responses. The structure is embedded with a network of sensors (denoted as blue
circles) which continuously measure structural responses. If damage (e.g., a crack,
denoted as red) occurs, then the sensor data in the vicinity of damage will experience
singular phonomenon, which behaves as implicit spike-like feature on some sparse
domain such as wavelet domain. Its implication in structural damage identification
is explored in Chapter 4.

Not only the structural dynamic and damage features have implicit sparse repre-

sentation, the pattern recognition or classification framework for damage identifica-

tion itself is also sparse in nature: the damage class of the test structure can only

belong to one of the predefined reference damage classes, thus establishing a fairly

straightforward sparse representation (SR) classification method for damage quan-

tification, which alleviates the computationally-intensive parametric training process

that is traditionally required. See Fig 1.8 for a brief introduction and Chapter 5

presents this new classification framework for damage identification.

1.3.2 Low-rank representation

Structural responses, from potentially hundreds of channels or sensors, can be rep-

resented as a data matrix. Analogous to the sparsity nature of single-channel data

(vector), in this thesis, the intrinsic low-dimensional data structure of multi-channel
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Test Feature Reference Dictionary
      Sparse
Representation

Figure 1.8 : The sparse representation classification framework. The test feature ϕ̂i ∈
R

n (the red column, e.g., the modeshape column in structural damage identification)
only activates itself via its sparse representation αi ∈ R

w (red in its own location,
white denotes inactivated zero) in terms of the large reference dictionary Ψ ∈ R

n×w

(n ≪ w) (by concatenating all feature columns of all candidate reference classes),
expressed as a highly underdetermined linear system of equations ϕ̂i = Ψαi. The
unique non-zero element (red) in αi (recovered by ℓ1-minimization) directly dictates
which class the test feature belongs to, within the predefined reference dictionary.
Sparse representation classification does not assume a parametric classifier or training;
its implication in structural damage identification is explored in Chapter 5.

data matrix is also explicitly exploited, e.g., by singular value decomposition (SVD)

or principal component analysis (PCA).

The data matrix X ∈ R
m×N with m sensors and N time history sampling points

(m < N) has an SVD representation (also see Fig. 1.9(a) for a brief illustration)

X = UΣVT =
r

∑

i=1

σiuiv
T
i (1.13)

where U = [u1, ...,um] ∈ R
m×m is an orthonormal matrix associated with the channel

(variable) dimension, called left-singular vectors or principal component directions;

Σ ∈ R
m×N has m diagonal elements σi as the ith singular value (σ1 > ... > σr >

σr+1 = ... = σm = 0), and V = [v1, ...,vN ] ∈ R
N×N is associated with the time

history (measurement) dimension, called the right-singular vector matrix. SVD is
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closely related to the eigenvalue decomposition (EVD): the left-singular vector matrix

U is obtained by the EVD of its covariance matrix

XXT = UΣ̂2UT (1.14)

and similarly for the right-singular vector matrix V,

XTX = VΣ̃2VT (1.15)

where Σ̂ ∈ R
m×m and Σ̃ ∈ R

N×N are zero-truncated and zero-padded version of

Σ ∈ R
m×N , respectively.

It is well understood that the ith singular value σi is related to the energy captured

by the ith principal direction of X. In structural dynamics, under some assump-

tion, the principal directions would coincide with the mode directions [48] with the

corresponding singular values indicating their participating energy in the structural

responses X, i.e., the structural active modes are captured by r principal components

under broadband excitation.

An empirical, but frequently sound, observation is that there are typically only

few active modes in the structural responses [149]; in other words, few of its singular

values are active: r is typically quite small. If the sensor or channel number m is

reasonably large, then r ≪ min (m,N) = m and X ∈ R
m×N is said to be low-rank.

However, this is seldom so for large civil structures, because the sensor number m is

not so much more than (often times even less than) the involved r modes; as a result,

r ≪ m can’t be guaranteed for a low-rank representation.

In this thesis, a simple yet effective strategy–rank-invariant matrix reshape

[150] (Fig. 1.9(a)) is proposed to guarantee a low-rank representation of structural

response data matrix, regardless of the original dimension of X ∈ R
m×N . Essentially,

mode information (few are active; hence, the rank of the structural response data
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matrix is small) remains invariant regardless of the reshape of the structural response

data matrix; a brief example of the structural seismic response data is shown in

Fig. 1.10, where in the original dimension of the structural response data matrix,

the implicit low-rank structure is not impressive (Fig. 1.10(a)); after reshape of the

data matrix, the low-rank representation stands out Fig. 1.10(b)). It is detailed in

Chapter 6, Chapter 7, Chapter 8, and Chapter 9, where many examples indicate that

such implicit (reshaped) low-rank structure inspires innovative and efficient solutions

to process and manage the multi-channel, often very large-scale, structural response

data.

1.3.3 Low-rank plus sparse representation

Inspired by the intrinsic low-dimensional structure of the multi-channel structural

responses and the sparsity nature of the damage signature, this thesis explores an

emerging high-dimension data analysis technique, principal component pursuit (PCP)

or robust principal component analysis, and finds new applications in the proposed

data-driven paradigm towards rapid and unsupervised SHM and damage detection.

PCP is able to decompose a matrix X ∈ R
m×N into a superposition of a low-rank

matrix L ∈ R
m×N and a sparse matrix S ∈ R

m×N as

X = L+ S (1.16)

S ∈ R
m×N is said to be sparse if it has only few non-zero entries, and L ∈ R

m×N is

low-rank in the sense that its SVD has few active singular values.

The L+S representation can intuitively represent the multi-channel structural vi-

bration responses corrupted by gross outliers, which is not uncommon in real-recorded

SHM data (see Fig. 1.1): the outliers or gross errors are sparse in nature, and the un-

derlying clean multi-channel structural responses typically possess intrinsic (reshaped)
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Figure 1.9 : (a) The singular value decomposition of the data matrix X ∈ R
m×N

(e.g., m sensors and N time history points) as a linear combination of r active singular
vector subspaces. If r ≪ min (m,N) = m, then explicitly X has a low-rank structure.
(b) Matrix reshape is proposed to guarantee and enhance the low-rank representation
of X if it does not have an explicit low-rank structure (i.e., if r ≪ min (m,N) = m
is not true, which is often the case for SHM data). Divide the fat X ∈ R

m×N

into l segments and reshape it to a new more “square” matrix X̄ ∈ R
w×v (w =

m× l, v = N/l) with each segment as one “row”. If X is structural vibration response
data matrix, the rank of X̄ remains r′ ≈ r (associated with the active modes) but
r′ ≈ r ≪ min(w, v) is significantly low hence a low-rank representation. The right plot
shows that the singular values of the reshaped data matrices with different reshape
factor l vanish radically (more in Chapter 8 and Chapter 9).

low-rank structure. Therefore, after decomposition of the corrupted X ∈ R
m×N into

L ∈ R
m×N plus S ∈ R

m×N , L ∈ R
m×N represents the underlying clean structural

responses, removing the outliers represented by S ∈ R
m×N (see Chapter 9).
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(a)

(b)

Figure 1.10 : After reshaping of the structural seismic response data matrix, its
low-rank structure is dramatically outstanding with its singular values vanishing rad-
ically (more in Chapter 8). (a) The eigenvalues (square of the singular values) of the
earthquake response data matrices of the Canton Tower in their original dimension:
X ∈ R

20×180000 for the Burma Earthquake, X ∈ R
17×180000 for the Sumatra Earth-

quake, and X ∈ R
20×180000 for the Japan Earthquake. (b) The eigenvalues (square of

the singular values) of the earthquake response data matrices of the Canton Tower
in reshaped dimension: X̄ ∈ R

2000×1800 for the Burma Earthquake, X̄ ∈ R
1700×1800 for

the Sumatra Earthquake, and X̄ ∈ R
2000×1800 for the Japan Earthquake.
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In addition, the L + S representation has an innovative insight into the data

structure of the multiple temporal close-up frames of structures as a superposition

of a background component and an innovation component: L represents the static

or slowly-changing correlated background component among the temporal frames,

which is naturally low-rank; S captures the innovation information in each frame

induced by the evolutionary damage, which is naturally sparse standing out from

the background. See the proposed dynamic imaging framework for local structural

assessment in Fig. 1.11 and Chapter 6 for more details.

1.3.4 Blind source separation (BSS)

Real-time SHM requires continuous and efficient processing of the massive measured

data with as little expert attendance as possible. BSS as a promising unsupervised

multivariate machine learning technique is able to recover the hidden source signals

and their characteristic factors using only the measured mixture signals, with high

potential in unsupervised learning of the patterns and features hidden in the large-

scale multi-channel SHM data set.

The linear instantaneous BSS model is expressed as

x(t) = As(t) =
n

∑

i=1

aisi(t) (1.17)

where x(t) = [x1(t), ..., xm(t)]
T is the observed mixture vector withm mixture signals,

and s(t) = [s1(t), ..., sn(t)]
T is the latten source vector with n sources; A ∈ R

m×n is

the unknown constant mixing matrix consisting of n columns with its ith column

ai ∈ R
m associated with si(t). The striking resemblance between the BSS model

(Eq. (1.17)) and the modal expansion (Eq. (3.1)) of structural responses x(t) as linear

mixtures of the modal responses q(t), proposed in Ref. [74], naturally incorporates
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the output-only modal identification problem to the BSS problem (see Fig. 1.12 for

illustrations).

With only x(t) known, Eq. (1.17) may not be mathematically solved. To alleviate

the problem, most BSS techniques, such as independent component analysis (ICA)

[65], second order blind identification (SOBI) [13], and complexity pursuit (CP) [129],

exert a general assumption that the source signals s(t) are statistically independent

(or as independent as possible) at each time instant t; surprisingly, it suffices to recover

the sources and the mixing matrix in most practical applications [64]. However, for

output-only modal identification, ICA method is restricted to undamped and very

lightly-damped structures [74][145][146]; SOBI methods meet with difficulty in non-

stationary excitation, closely-spaced modes, and non-diagonalizable damping cases

[112][159][93][57][7][93].

This thesis explores another approach to solve the BSS problem (incorporating

the output-only modal identification problem): to exploit the signal complexity (CP

method) of the mixtures (structural responses) and sources (modal responses) itself

[147] (Chapter 2); a simple example of signal complexity is shown in Fig. 1.14. Besides,

the rich implications of the learning rule, independence of source signals measured by

non-Gaussianity (ICA method), lead to sparse distribution (Fig. 1.13) which indicates

the structural damage feature in data-driven damage detection [146] (Chapter 4) and

inspires new applications in significantly compressing the multi-channel structural

responses [149] (Chapter 7). The multivariate unsupervised BSS learning rule is

exploited in Chapter 2, Chapter 3, Chapter 4, and Chapter 7.
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1.4 Objective

The overall objective of the dissertation research is to systematically develop a new

paradigm with effective and efficient data processing and management algorithms

towards rapid, unsupervised, and automated health monitoring and assessment of civil

infrastructure. It aims to address two bottlenecks which have hindered modern SHM

systems from achieving real-time monitoring and assessment: rapid processing of

continuously-streaming data sets and efficient large-scale data management (sensing,

transfer, communication, etc) with dense networked sensors (Fig. 1.15). Opposed to

the traditional model based and parametric methods that are usually computationally

intensive and require extensive user-involvement, the proposed methodology is data-

driven in nature–by harnessing the data structure itself of the (available) structural

response data set. Specifically, the sparse representation and low-rank structure of

the massive data set, which turn out to be the salient structural dynamic and damage

features, are exploited to establish a novel data-driven paradigm, enabling rapid data

sensing and transmission, efficient output-only modal identification, real-time damage

detection and non-destructive assessment of civil structures. Numerical simulations,

laboratory experiments, and field measurement data of a real-world large-scale cable-

stayed bridge, the super high-rise Canton Tower, and seismically excited buildings

are investigated.

1.5 Outline

This thesis centers around the methodology of harnessing the data structure itself

(mostly, sparsity and low-rank structure) of the multi-channel structural responses

towards rapid and unsupervised health monitoring and assessment of civil infrastruc-
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ture. It is organized as follows:

Part 1 includes Chapter 2 and Chapter 3, which present new output-only non-

parametric data-driven modal identification methods based on the unsupervised mul-

tivariate blind source separation techniques. Specifically, in a data-driven framework,

the signal complexity of the (only available) structural responses and the underlying

modal responses are exploited by the complexity pursuit (CP) learning rule, estab-

lishing a physical connection between the modal expansion and the BSS model (see

a new modal identification CP algorithm in Chapter 2). Chapter 3 further harnesses

the sparsity nature of the underlying modal coordinates and addresses the prob-

lem of performing data-driven output-only modal identification using limited sensors

(less than the mode number). The proposed sparse component analysis (SCA) based

method interprets the modal expansion in a new perspective of sparse representation

and clustering, allowing fairly intuitive and efficient output-only modal identification.

Part 2 includes Chapter 4, Chapter 5, and Chapter 6, developing a data-driven

multi-scale (global and local) damage detection framework. Explicitly, the sparse fea-

ture, which is proposed as the salient signature of damage hidden in the (often very

noisy) structural data, either vibration responses in global SHM (see the proposed

damage identification method via sparse representation in Chapter 4) or close-up im-

ages/videos of structures in local non-destructive assessment (see the proposed new

local damage assessment framework dynamic imaging in Chapter 6), is intention-

ally targeted. Chapter 5 presents a novel sparse representation classification method

for both locating damage and estimating damage severity; it exploits the underly-

ing sparsity nature of the classification problem itself and establishes an extremely

simple data-driven empirical sparse representation methodology, without the need of

reference training and setting up parametric classifier model that is computationally
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intensive and user-dependent.

Part 3 includes Chapter 7, Chapter 8, and Chapter 9, addressing the emerging

large-scale SHM data management problems by harnessing the low-rank structure,

intrinsic but implicit, in the multi-channel structural response data. Specifically,

Chapter 7 presents a new unsupervised data compression method based on low-rank

representation and optimal adaptive multivariate learning rule, removing both intra-

and inter- redundancy of the multi-channel structural response data. Chapter 8 fur-

ther proposes a matrix reshape strategy to guarantee a low-rank representation of any

structural response data matrix to achieve most effective compression of very large-

scale structural response data. Finally, Chapter 9 develops a new data cleansing

algorithm for simultaneously removing both dense noise and gross outliers (naturally

as sparse elements) which are ubiquitous in multi-channel structural health monitor-

ing data sets (with an intrinsic low-rank structure).

Chapter 10 concludes the thesis and recommends future work.
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Figure 1.11 : The dynamic imaging of structures paradigm for real-time automated
damage detection. The upper plot shows that the multiple frames (black) of the
crack developing in the structure (from time T0 to TN) can be thought of as a static
background (blue) plus the sparse innovation (red) induced by the cracking. The
middle plot shows that each temporal frame of resolutionM1×M2 is stacked into one
column of the data matrix X ∈ R

M×N (each column is of dimension M = M1 ×M2

rows representing one temporal frame and there are N columns), which is decomposed
into a superposition of a low-rank coherent background component L ∈ R

M×N and a
sparse innovation component S ∈ R

M×N that indicates the time-evolutionary damage
development. Each column of L ∈ R

M×N and S ∈ R
M×N is finally restacked back to

the original image dimension, and the bottom plot shows the recovered background
component and sparse component at time TN .



www.manaraa.com

26

Source Signal
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Mixture 
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Blind Source Separation

(ICA, SOBI, CP, & SCA)

Source Signal

Source Signal
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(a)
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Figure 1.12 : (a) Interpretation of the blind source separation (BSS) framework.
Without knowing the original source signals and their mixing process, BSS tech-
niques such as ICA, SOBI, and CP, assume the sources are independent and simul-
taneously recover both the source signals and their mixing characteristics using only
the measured mixture signals. (b) Incorporating the output-only modal identifica-
tion problem to the BSS model: the structural responses from the coupled structures
are linear mixtures (modeshapes) of the independent modal responses, each from the
de-coupled SDOF “system” on the modal coordinate (more in Chapter 2 and Chapter
3).
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Figure 1.13 : (a) The BSS technique ICA seeking most independent (non-Gaussian)
source signals leads to extracting signals with spiky distribution (such as Laplace
distribution); the theoretical justification is in Chapter 4. (b) Two sources (left
column), a pulse-like signal (s1(t) = 2, t = 5 sec; s1(t) = 0, otherwise) and a Gaussian
white noise (s2(t) = 1 + randn(t)), both with a sampling frequency of 100 Hz and

a time history of 10 seconds, are mixed by a matrix A =

[

1 1
0.5 1

]

, yielding the

mixtures (middle column) x1(t) = s1(t)+s2(t), x2(t) = 0.5s1(t)+s2(t). The pulse-like
source signal of interest is buried in noisy observed mixtures; however, it is correctly
extracted by ICA, with the first IC (IC1) approximating the pulse-like source. In
the recovered IC1, the temporal location of the pulse-like feature indicates its spike
occurrence instant at 5th second, which agrees with the original pulse-like source.
In addition, the recovered mixing matrix also carries the spatial signature of the
recovered component that can indicate damage location; More in Chapter 4 and
Chapter 7.
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1.4823

1.1053

1.3528

0.9752

0.2306

MixturesSources

0.9452

0.6172

0.5768

0.8972

1.0057

Figure 1.14 : The BSS technique CP extracts the simple components from the mix-
tures as the source signals. Signal complexity is approximated by temporal pre-
dictability: the simplest source signal (yellow line), corresponding to the 1st modal
response, is most preditable and has highest predictability value, and so on. More in
Chapter 2.
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Data fusion at base station

Real-time processing

Raw data

Accelerometer/Camera

Decison-making

?

Raw data

Feature Feature

Figure 1.15 : A framework of multi-scale sensor network for health monitoring and
assessment of civil structures (e.g., a cable-stayed bridge). The structural data mea-
sured from the optical fiber bragg grating (OFBG) sensors and accelerometers or the
close-up images/videos from digital cameras are transferred to the base station of the
SHM system and then processed to extract the structural and damage features (e.g.,
sparsity and low-rank structure, the thread of this thesis) for decision-making.



www.manaraa.com

30

Chapter 2

Output-only Modal Identification by Complexity

Pursuit

Rapid identification of structural modal parameters is essential for online model up-

dating, semi-active structural control, and modal-based damage detection. The lack

of input or excitation information presents the need to develop output-only modal

identification methods, whereas existing output-only modal identification methods

(parametric model based or signal processing based) suffer from intensive compu-

tation and user involvement burdens. This chapter exploits the signal property

itself (complexity) of the available structural responses and the underlying modal

responses, establishing a new data-driven non-parametric output-only modal identi-

fication method based on a novel blind source separation learning rule complexity

pursuit, which can be implemented efficiently and blindly.

2.1 Introduction

In the recent years, blind source separation (BSS) has shown prominent capability as a

new unsupervised signal processing tool [65], and has been introduced into structural

dynamics [6]. Essentially, BSS techniques are able to recover the hidden source signals

and their underlying factors using only the observed mixtures; it may thus be suitable

to perform output-only modal identification.

Two BSS techniques, independent component analysis (ICA) [65] and second order

blind identification (SOBI) [13], have been successfully applied to conduct output-
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only modal identification of structures [74][145][146][112][159][93][57][7], where the

modal responses are viewed as the targeted sources of the BSS model. Compared to

conventional parameter-fitting methods, the BSS based methods are non-parametric

with straightforward and efficient implementations, and may thus enjoy wider appli-

cations. Several issues on the BSS methods are noted, however. For example, ICA

method is restricted to undamped and very lightly-damped structures [74][145][146];

SOBI methods make assumption of stationary sources [112][159][93][57][7] and meet

with difficulty in the closely-spaced modes and non-diagonalizable damping cases [93],

which are quite common in practical applications of structural dynamics. Besides, the

modified SOBI method proposed in [93] only addresses the lightly-complex modes in

the non-proportional damping case, where the time-frequency ICA method proposed

by the authors [145], which is able to handle highly-damped structures, also shows

degradation.

This chapter proposes a new output-only time-domain modal identification method

using a novel BSS learning rule termed complexity pursuit (CP) [63][129][130], intend-

ing to handle the aforementioned issues in modal identification. The CP learning rule

is cast into the modal identification framework using the proposed concept of inde-

pendent “physical systems” living on the modal coordinates that connects the modal

expansion and the BSS model targeted by the CP learning rule, such that when the

system responses are fed as mixtures into the BSS model, the CP algorithm can

blindly extract the mode matrix and time-domain modal responses, thereby readily

estimating the modal parameters of the system.

Numerical simulations, experimental study, and real-world seismically exicted

structures examples show that the CP method is able to accurately and efficiently ex-

tract modal information (frequency, modeshape, and damping ratio) directly from the
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measured system responses, even in closely-spaced mode and highly-damped mode

cases, as well as in the approximation of the non-diagonalizable highly-damped com-

plex modes.

2.2 Blind source separation (BSS)

2.2.1 The BSS problem

The linear instantaneous BSS model [65] is expressed as

x(t) = As(t) =
n

∑

i=1

aisi(t) (2.1)

where x(t) = [x1(t), ..., xm(t)]
T is the observed mixture vector withm mixture signals,

and s(t) = [s1(t), ..., sn(t)]
T is the latten source vector with n sources; A is the

unknown constant mixing matrix consisting of n columns with its ith column ai

associated with si(t). Assume m = n, i.e., A is square such that A ∈ R
n×n and

ai ∈ R
n. Note that the overdetermined case can always be cast into the square one

using the preprocessing technique principle component analysis (PCA) to reduce the

dimension; whereas the underdetermined case m < n, i.e., the available sensors are

less than the sources, is not considered in this study. With only x(t) known, Eq. (2.1)

may not be mathematically solved. To alleviate the problem, most BSS techniques

exert little assumption that the sources s(t) are statistically independent at each time

instant t; surprisingly, it suffices to recover the sources and the mixing matrix in most

practical applications [65].

As the most popular technique to solve the BSS problem, ICA [65] treats the sig-

nals as random variables; it estimates the sources by the recovered components which

are as non-gaussian as possible, i.e., the temporal structure of signals is ignored and

only the information of their (high-order) statistical distribution are used. Although
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such a learning rule by ICA is proven powerful and efficient in many applications,

it has also been pointed out that ICA may fail when the sources possess significant

temporal structures [63][129]. On the other hand, SOBI only uses the second-order

statistics of signals and makes assumption of stationary sources and known noise

distribution (stationary temporally white) [13], which may hinder its capability in

practice.

2.2.2 Stone’s theorem for BSS

A novel learning algorithm for the BSS problem, CP [63][129][130], has been pro-

posed to address the drawback of ICA; it explicitly explores the significant temporal

structure hidden in the signals and can recover even the Gaussian sources that ICA is

incapable of handling. Stone [129] proposed an efficient CP scheme based on a con-

jecture that exploits the mechanism underwriting the generation of a source signal;

that is, possible source in the physical system is generated by the motion of mass over

time governed by certain physical law. As such, the observed mixtures must consist

of simpler sources, each of which is generated by a different governing law.

Xie et al. [140] theoretically proved that the complexity of any mixture always

lies between the simplest and the most complex constituent sources; it is currently

termed as Stone’s theorem. Based on this basis, the least complex signal extracted

from a set of mixtures is guaranteed to be a source signal. Specifically, CP seeks a

de-mixing (row) vector wi such that the recovered component yi(t)

yi(t) = wix(t) (2.2)

yields least complexity and thus approaches the (simplest) source signal.
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2.2.3 Measuring signal complexity by temporal predictability

In statistics, the complexity of a signal, say, yi (the temporal index t is made implicit),

is rigorously measured by Kolmogorov complexity. Given that Kolmogorov complex-

ity is not intuitive and difficult to approximate in practice, Stone [129] provided a

simple yet robust complexity measure of a signal, temporal predictability, which is

defined by

F(yi) = log
V(yi)

U(yi)
= log

N
∑

t=1

(yi(t)− yi(t))
2

N
∑

t=1

(ŷi(t)− yi(t))
2

(2.3)

where the long-term predictor yi(t) and short-term predictor ŷi(t) are given, respec-

tively, by

yi(t) = λLyi(t− 1) + (1− λL)yi(t− 1) 0 ≤ λL ≤ 1

ŷi(t) = λS ŷi(t− 1) + (1− λS)yi(t− 1) 0 ≤ λS ≤ 1
(2.4)

The parameter λ is defined by the half-life parameter h as

λ = 2−1/h (2.5)

where hS = 1 and hL is arbitrarily set (say, 900000) as long as hL ≫ hS [129].

Note that V(·) measures the verall variability [129] of yi(t), described by the

prediction error of a long-term moving average yi(t); it generally characterizes the

global statistical information of yi(t). On the other hand, U(·) measures the local

smoothness [128] of yi(t), by exploiting the temporal structure of yi(t) using a pre-

dicting short-term moving average ŷi(t). Thus, the temporal predictability operator

F(·), which is used as the contrast function of CP, explicitly incorporates the statis-

tical and temporal information of yi(t) by using the ratio of these two terms; it is

constrained to search for the most predicted component which possesses small local
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variance (smoothness) as compared to its global (long-term) variance. It turns out

useful in extracting sources with proper temporal structure.

An example is presented here to illustrate Stone’s theorem with the signal com-

plexity measured by temporal predictability F(·). Five zero-mean sinusoids with ran-

dom variance and different frequencies (Fig. 1.14 and Table 2.1) are used as source

signals, which are mixed by a normal-distributed random mixing matrix, yielding

five mixtures. The sampling frequency is set at 100 Hz and with a time history of

1000 seconds. The predictability of the sources and mixtures are computed using

Eq. (2.3). Due to randomness of the signal variance and mixing matrix, the pro-

cedures are repeated 100 times. For illustrations, the result for one run is listed in

Table 2.1. Obviously the predictability of all the five mixtures lies between the most

predicted source 1 (simplest) and least predictable source 5 (most complex), which

exactly follows Stone’s theorem. The results from other 99 runs also indicate the

validity of Stone’s theorem, but they are not presented here.

Another interesting point noted is that lower frequency signal has higher pre-

dictability, regardless of signal variance. This result is quite straightforward to un-

derstand; for example, a signal with a constant value (zero frequency) is obviously

most predictable among others. Also note that the conclusion holds for signals with

arbitrary variance, since the predictability measure has naturally incorporated the

(global) variance term.

2.2.4 Stone’s algorithm performing CP

Incorporate Eq. (2.2) into Eq. (2.3),

F(yi) = F(wi,x) = log
V(wi,x)

U(wi,x)
= log

wiRwT
i

wiR̂wT
i

(2.6)
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Table 2.1 : Predictability of the sources and mixtures.

Source Frequency Predictability Mixture Predictability

1 0.1 1.4823 1 1.0057

2 1 1.3528 2 0.8972

3 π 1.1053 3 0.5768

4
√
15 0.9752 4 0.6172

5 10 0.2306 5 0.9452

where R and R̂ are the n × n long-term and short-term covariance matrix between

the mixtures, respectively; their elements are defined as

rij =
N
∑

t=1

(xi(t)− xi(t))(xj(t)− xj(t))

r̂ij =
N
∑

t=1

(xi(t)− x̂i(t))(xj(t)− x̂j(t))

(2.7)

The covariance matrices can be computed by fast convolution operations [17][129].

Therefore, given a set of mixtures x(t), the CP learning rule is formulated to search

for the de-mixing vector wi which maximizes the temporal predictability contrast

function F(·); this can be solved by the classic gradient ascent technique as described

in the following.

Following Eq. (2.6), the derivative of F with respect to wi is

∇
wiF =

2wi

Vi
R− 2wi

Ui

R̂ (2.8)

By iteratively updating wi, a maximum of F is guaranteed to be found; the

extracted component yi = wix with maximum temporal predictability is the least

complex signal, and thus approaches the simplest source hidden in the mixtures,

according to Stone’s theorem in the CP learning rule.
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Restricted to Stone’s theorem, however, only the simplest source can be extracted

by maximizing the temporal predictability using the gradient ascent technique. For-

tunately, such ambiguity can be easily resolved by the deflation scheme. Thereby, the

sources can be subsequently extracted: after one source (the currently simplest one)

is extracted, it is “removed” from the mixtures using a Gram-Schmidt de-correlation

technique [129]; the second simplest source then becomes the simplest one in the

remaining mixtures and can thus be extracted by CP, and so on. Stone [129] pro-

posed a more elegant algorithm that can efficiently extract all the hidden sources

simultaneously, described as follows.

The gradient of F reaches zero in the solution, where

∇
wiF =

2wi

Vi
R− 2wi

Ui

R̂ = 0 (2.9)

Rewriting as

wiR =
Vi
Ui

wiR̂ (2.10)

yields a well-defined generalized eigenproblem [17][129]; the solution for wi can thus

be obtained as the eigenvector of the matrix R̂−1R, with the eigenvalue γi = Vi/Ui.

The sources can then be efficiently extracted simultaneously by

s(t) = y(t) = Wx(t) (2.11)

where the eigenvector matrix W, with wi as its ith row, is the target de-mixing

matrix such that A = W−1, and y(t) = [y1(t), ..., yn(t)]
T is the recovered component

vector which approaches the source vector s(t).

It should be mentioned that W (also A) is real-valued, since both R and R̂

are symmetric. However, it does not undermine the capability of the CP algorithm,

which provides excellent performance in identifying modal information of structures
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even with complex modes, detailed in later sections. Also note that CP and other

BSS methods are inherently incapable of identifying the order (sequence) and the

variance of the sources and the mixing matrix [65]; yet this turns out trivial in modal

identification, as will be discussed in section 2.3.2.

2.3 Complexity pursuit on modal coordinates

The CP learning rule lays its foundation on the observation that statistically inde-

pendent sources hidden in the observed mixtures generally originate from the motion

of mass over time, each is independently governed by some physical law. It is particu-

larly suitable to describe system motions and can be cast into the modal identification

framework.

2.3.1 “Physical systems” on modal coordinates

For a linear time-invariant system, its equation of motion (EOM) is

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) (2.12)

where M, C , and K are constant mass, diagonalizable damping, and stiffness matri-

ces, respectively, and are real-valued and symmetric; x(t) = [x1(t), ..., xn(t)]
T is the

system response (displacement) vector and f(t) is the external force vector.

Feeding the observed system responses x(t) as mixtures into the BSS model with

the CP learning rule, x(t) must (linearly) consist of simple source signals indepen-

dently driven by some physical law. Such a viewpoint coincides with the modal

identification issue, which expands the coupled system responses x(t) as linear com-

binations of the decoupled modal responses, similar to the BSS model Eq. (2.1),

x(t) = Φq(t) =
n

∑

i=1

ϕiqi(t) (2.13)
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where Φ ∈ R
n×n is the normal vibration mode basis matrix with its ith column

(modeshape) associated with the ith modal response qi(t) in the modal response

vector q(t) = [q1(t), ..., qn(t)]
T , which can be recovered by

q(t) = Φ−1x(t) (2.14)

The main virtue of using modal expansion to characterize the motion of system

(2.12) is that the vibration mode matrix provides a complete basis set for the space

spanned by the linear system Eq. (2.12) and is thus able to decouple the system

Eq. (2.12). Substituting Eq. (2.13) into Eq. (2.12) and pre-multiplying both sides of

Eq. (2.12) by ΦT ,

ΦTMΦq̈(t) +ΦTCΦq̇(t) +ΦTKΦq(t) = ΦT f(t) (2.15)

yielding

ΦTMΦq̈(t) +ΦTCΦq̇(t) +ΦTKΦq(t) = ΦT f(t) (2.16)

where M∗ , C∗ , and K∗ are, respectively, the diagonal real-valued modal mass,

damping, and stiffness matrices; f∗(t) is the modal force vector. The n-DOF system

(12) is thus decoupled into n single-degree-of-freedom (SDOF) systems, each motion

qi(t) (at the ith mode, i = 1, ..., n) is governed by

m∗

i q̈i(t) + c∗i q̇i(t) + k∗i qi(t) = f ∗

i (t) (2.17)

whose damping ratio and resonant (damped) frequency are ζi = c∗i
/

2
√

m∗

i k
∗

i and

ωdi = ωi

√

1− ζ2i =
√

(1− ζ2i )k
∗

i /m
∗

i (ωi is the natural frequency of the ith mode),

respectively. The fundamental idea of the proposed CP method lies in the observation

that the “physical system” Eq. (2.17) underwrites the motion of the ith modal mass

over time (i.e., the decoupled SDOF system motion on the ith modal coordinate qi(t));
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the generation mechanism of this modal response well matches Stone’s theorem such

that it can be viewed as the constituent source targeted by the CP learning rule, and

the mode matrix Φ combining n modal responses corresponds to the mixing matrix

of the CP based BSS model.

2.3.2 CP for modal identification

With the connection established between the modal responses (and the mode matrix)

and constituent sources (and the mixing matrix) in the CP learning rule through the

“physical systems” living on the modal coordinates, the only requirement is that

modal responses be statistically independent, which corresponds to the general as-

sumption by most BSS techniques (e.g., ICA, SOBI, CP, etc).

It has been shown in Ref. [74] that modal responses can be viewed as statisti-

cally independent sources if their oscillating frequencies are incommensurable (e.g.,

the ratio between two frequencies is irrational). A generalization of this conclusion is

proposed in the CP framework that, if the “physical systems” on modal coordinates

have incommensurable inherent resonant frequencies (i.e., ωi and ωj are incommen-

surable for any i, j = 1, ..., n, i 6= j), they then function as statistically independent

systems, generating independent modal responses that dominate the system responses

in respond to the initial conditions (e.g., impact force in free vibration) or random

excitation (in ambient vibration), or others provided that they are not monotone (or

narrow-band) harmonic force. Such assumptions are naturally satisfied in the modal

identification issue in practice. On the one hand, most systems in practice have in-

commensurable resonant frequencies. On the other hand, two fundamental excitation

types, namely impact excitation (free vibration) and random excitation (e.g., white

noise), are expected to induce the modal responses (i.e., those vibrating at the res-
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onant frequencies) that dominate the system responses, which may additionally be

accompanied, though, by other non-resonant vibrations and measurement noise in

practice. Therefore, in most practical applications, the CP method guarantees to

extract modal responses directly from the system responses in both free and ambient

vibrations, regardless of the level of damping and the topology of the modes (e.g.,

whether separated or close-spaced).

In free vibration f(t) = 0, modal responses are exponentially decaying sinusoids,

and the motion of the ith modal mass governed by Eq. (2.18) can be written as

qi(t) = uie
−ζiωit cos(ωdit+ θi) (2.18)

and the system responses are linear combinations of these modal responses, expressed

as

x(t) =
n

∑

i=1

ϕiqi(t) =
n

∑

i=1

ϕiuie
−ζiωit cos(ωdit+ θi) (2.19)

where ui and θi are some constants determined by initial conditions.

In random excitation, the resonant vibrations (modal responses) dominate the

system responses [74]. Compared to the free vibration of the decoupled SDOF in

form of exponentially decaying sinusoid, the random vibration at the ith mode is

characterized by an envelope function ei(t), randomly modulating the exponentially

decaying sinusoid,

qi(t) ∼= ei(t)uie
−ζiωit cos(ωdit+ θi) (2.20)

and the system responses are written as

x(t) =
n

∑

i=1

ϕiqi(t)
∼=

n
∑

i=1

ϕiei(t)uie
−ζiωit cos(ωdit+ θi) (2.21)

Note that the random excitation need not to be white-noise type (although this

is one of the ideal situations) as assumed by a few traditional modal identification
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methods (e.g., NExT); the CP method holds validity as long as the excited modal

responses dominate the system responses, since the formulations of the output-only

CP method as per Eq. (2.12) to (2.21) assumes no knowledge with respect to the

explicit distribution of the excitation. Also, the formulations use the displacement

as the system responses, yet they can also apply to other types of system responses

(e.g., velocity, acceleration, or strain).

In the case of non-diagonalizable damping (damping matrix may not be diago-

nalized by the normal mode matrix), Eq. (2.12) may not be directly decoupled by

Φ. Still, the system (2.12) can be decoupled into (2.17) in the state-space by the

vibration mode matrix Φc which is complex-valued in such a case, as well as the

modal responses qc(t). Besides, the inherent resonant frequency and damping prop-

erty of the “physical system” on the modal coordinate remain invariant, such that

the validity of the proposed CP algorithm for modal identification holds. The formu-

lations of modal responses and system responses in this case are analogous to those

of proportional damping as per Eq. (2.18) to (2.21)), and not presented herein.

Therefore, using Stone’s CP algorithm based on temporal predictability as de-

tailed above, the time-domain modal responses q(t), which are the constituent sources

hidden in the system motion mixtures x(t), can be efficiently extracted by CP simul-

taneously,

q̃(t) = s(t) = Wx(t) (2.22)

and the vibration mode matrix can be estimated by

Φ̃ = W−1 (2.23)

The frequency and damping ratio can be readily computed from the recovered time-

domain modal response q̃(t) using Fourier transform (FT) and logarithm-decrement
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technique (LT), respectively.

As mentioned at the end of Section 2.2.2, CP and other BSS methods may not

recover the exact order and variance of the modal responses and their associated

modeshapes (the columns of the mixing matrix). This is easily resolved, however:

the mode order can be rearranged according the frequency values, e.g., the recovered

modal response (as well as its associated modeshape vector) with smallest frequency

is recognized as the 1st mode, and so on. Also, the frequency and damping ratio are

not dependent on the variance of the modal response, and only the directions of the

recovered modeshape vectors are needed to decouple the system responses [145].

2.4 Numerical simulations

To validate the proposed CP modal identification method, numerical simulations are

conducted on a three-DOF linear time-invariant spring-mass damped model (Fig. 2.1)

(a 12-DOF system example is presented in Section 2.4.5).

Different system parameters are set to address several issues in modal identi-

fication, namely well-separated modes, closely-spaced modes, and complex modes,

respectively, in both lightly- and highly- damped system. In each case, free vibration

and random vibrations are studied, respectively. Both stationary and non-stationary

random vibrations are considered. Stationary random excitation uses Gaussian white

noise (GWN), whereas non-stationary random excitation is generated by modulating

the GWN with an exponentially decaying function at a constant rate. Newmark-Beta

algorithm is used to obtain the time histories of the system responses with a sampling

frequency of 10 Hz.

In the following, the procedures of the CP method are carried out on the obtained

system responses. The long-term and short-term half-life parameters are set to be
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Figure 2.1 : The 3-DOF linear spring-mass damped system

hL = 900000 and hS = 1, respectively, where hS = 1 is a fixed setting and hL = 900000

is arbitrary as long as hL ≫ hS [129] (these parameters remain unchanged for all the

examples). In the following, the long-term and short-term covariance matrices are

computed using the fast convolution filter. Eigen-decomposition is then conducted

on the obtained covariance matrices, yielding the eigenvector matrix as the de-mixing

matrix. The vibration mode matrix is estimated by Eq. (2.23), and the time-domain

modal responses are recovered by Eq. (2.22) such that the frequency and damping

ratio can be calculated in a straightforward way by FT and LT [96], respectively. The

correlation between the estimated mode ϕ̃i and the theoretical mode ϕi is evaluated

by the modal assurance criterion (MAC), defined as

MAC(ϕ̃i,ϕi) =
(ϕ̃T

i ·ϕi)
2

(ϕ̃T
i · ϕ̃i)(ϕ

T
i ·ϕi)

(2.24)

ranging from 0 to 1, where 0 means no correlation and 1 indicates perfect correlation.

Note that estimation of the damping ratio in random vibration needs additional infor-

mation with respect to the system or preprocessing technique (e.g., random decrement

or NExT), and this is not conducted in this study.
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2.4.1 Proportional damping

For convenient comparison, the following parameters are borrowed from Kerschen et

al. [74] and set to the system (Fig. 2.1) for the proportional damping case,

M =













2 0 0

0 1 0

0 0 3






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K =













2 −1 0

−1 2 −1

0 −1 2










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C = αM = α













2 0 0

0 1 0

0 0 3













(2.25)

Three values α = 0.01 , 0.05 , and 0.13 are considered corresponding to different

damping levels. In free vibration, f(t) = 0, with initial condition x(0) =

[

0 1 0

]T

and ẋ(0) =

[

0 0 1

]T

. For random vibration, stationary GWN and non-stationary

WN are used to excite the system at the 2nd and 3rd DOFs, respectively.

The identified results by the CP method are compared with the theoretical results

as shown in Table 2.2 and 2.3. Clearly the identified frequency, damping ratio, and

vibration modes are in excellent agreement with those theoretical results, regardless

of the levels of damping and excitation types. As shown in Fig. 2.2, the MAC values

of the identification (α = 0.01) remain very high with different sample (window)

lengths of the time histories of the system responses: all are above 0.99 (except when

the sample length reduces to 10 seconds, but it has been less than the period of the 1st

mode 1/0.0895 = 11.1732 seconds); it indicates that the accuracy of the CP method

is insensitive to the sample length.

Also presented in Fig. 2.3 to Fig. 2.5 are the case of α = 0.05 with system re-

sponses in free vibration, and the recovered modal responses in free vibration, sta-

tionary random vibration, and non-stationary vibration, respectively, as well as their

power spectral density (PSD). To show the original results by CP, the sequence of

the recovered modal responses depicted within each case is not rearranged (e.g., in
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Fig. 2.4, Modal Response 1 merely means the first recovered one by CP, not implying

Mode #1), but this trivial issue can be easily solved by what is mentioned at the end

of Section 2.3.2. It is observed that the multi-component system responses are well

separated into monotone modal responses. In free vibration, the recovered modal

responses match the desired exponentially decaying sinusoids. Note that ICA fails

when α > 0.01, as shown in Ref. [74].

2.4.2 Noise effects

To investigate the robustness of the CP method, zero-mean GWN is added to the

system responses (Section 2.4.1) with a 10% (with respect to the original signal) RMS

(root-mean-square operator of a signal) noise level. The procedures of the CP method

are then performed on the noise-contaminated system responses. For conciseness, only

the identification results of α = 0.05 in free vibration is given in Table 2.4. It is seen

that the identification results are rarely affected by the noisy data (other cases with

different damping levels and excitation types also indicate similar accuracy), i.e., the

CP method is robust in the noisy environment also.

2.4.3 Closely-spaced modes

This section considers the closely-spaced mode case. The model with diagonalizable

damping matrix in McNeill et al. [93] is modified to yield a similar form of the model

in proportional damping matrix, as

M =













1 0 0

0 2 0

0 0 1






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
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K =
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
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

(2.26)

All the parameters are set the same as the above sections, except that the initial



www.manaraa.com

47

Table 2.2 : Results of free vibration (proportional damping well-separated modes)

Frequency (Hz) Damping ratio (%)

Mode 1 2 3 1 2 3

α = 0.01 Exact 0.0895 0.1458 0.2522 0.8887 0.5460 0.3155

CP 0.0879 0.1465 0.2539 0.8822 0.5691 0.3116

α = 0.05 Exact 0.0895 0.1458 0.2522 4.4437 2.7299 1.5775

CP 0.0879 0.1465 0.2539 4.4493 2.8233 1.5248

α = 0.13 Exact 0.0895 0.1458 0.2522 11.5537 7.0977 4.1015

CP 0.0879 0.1465 0.2539 11.4167 7.3448 3.9240

Table 2.3 : MAC results in proportional damping cases (well-separated modes)

α Free vibration Stationary GWN Non-Stat. GWN

Mode 1 2 3 1 2 3 1 2 3

0.01 0.9999 0.9999 0.9998 1.0000 0.9998 0.9998 1.0000 0.9987 1.0000

0.05 0.9990 0.9993 0.9975 1.0000 0.9962 0.9998 0.9998 0.9977 0.9981

0.13 0.9929 0.9816 0.9876 0.9990 0.9916 0.9996 0.9996 0.9977 0.9873

Table 2.4 : CP Identification in noisy free-vibration (10% RMS noise, α = 0.05)

Frequency (Hz) Damping ratio (%)
MAC

Mode Theoretical Identified Theoretical Identified

1 0.0895 0.0879 4.4437 4.2058 0.9997

2 0.1458 0.1465 2.7299 2.8200 0.9516

3 0.2522 0.2539 1.5775 1.5454 0.9963
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Figure 2.2 : The MAC values from the identification results by CP with different
sample lengths of the system responses of the 3-DOF system (proportional damping
with well-separated modes, α = 0.01).

Figure 2.3 : The system responses in free vibration (proportional damping with well-
separated modes, α = 0.05).
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Figure 2.4 : The modal responses recovered by CP in free vibration (proportional
damping with well-separated modes, α = 0.05).

conditions used in free vibration are x(0) =

[

0 0 0

]T

and ẋ(0) =

[

0 0 1

]T

.

The identification results are shown in Table 2.5 and 2.6, which indicate that the CP

method provides fairly accurate modal identification of structures with closely-spaced

modes in all cases. Fig. 2.6 to Fig. 2.7 give an example of identifying highly-damped

system (α = 0.13) with close modes in free vibration. It is shown in Fig. 2.6 that the

2nd and 3rd modes are very closely-spaced and rarely distinguished in the PSD of the

system responses; still, they are completely separated by the CP method as shown in

Fig. 2.7. On the other hand, as shown in Ref. [93], SOBI is incapable of identifying

the close modes of this similar model.
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Figure 2.5 : The modal responses recovered by CP in stationary random vibration
(proportional damping with well-separated modes, α = 0.05).

Table 2.5 : Results of free vibration in closely-spaced modes cases

Frequency (Hz) Damping ratio (%)

Mode 1 2 3 1 2 3

α = 0.01 Exact 0.1039 0.3425 0.3713 0.7656 0.2324 0.2143

CP 0.1074 0.3418 0.3711 0.7667 0.2314 0.2030

α = 0.05 Exact 0.1039 0.3425 0.3713 3.8279 1.1618 1.0715

CP 0.1074 0.3418 0.3711 3.8199 1.1434 1.0151

α = 0.13 Exact 0.1039 0.3425 0.3713 9.9526 3.0208 2.7860

CP 0.1074 0.3418 0.3711 9.9770 2.9906 2.7274
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Table 2.6 : MAC results in closely-space mode cases

α Free vibration Stationary GWN Non-Stat. GWN

Mode 1 2 3 1 2 3 1 2 3

0.01 1.0000 0.9999 0.9998 0.9999 1.0000 0.9996 1.0000 1.0000 0.9990

0.05 1.0000 0.9971 0.9999 0.9999 1.0000 0.9991 1.0000 0.9973 0.9963

0.13 1.0000 0.9735 0.9759 0.9998 0.9999 1.0000 0.9999 0.9765 0.9914

Figure 2.6 : The system responses in free vibration (closely-spaced modes, α = 0.13
).

2.4.4 Non-diagonalizable high damping

This section investigates a more general situation of non-proportional (non-diagonalizable)

damping. The damping matrix of the model from McNeill et al. [93] is slightly mod-
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Figure 2.7 : The modal responses recovered by CP in free vibration (closely-spaced
modes, α = 0.13 ).

ified to obtain a non-diagonalizable high-damping example as follows.
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(2.27)

Complex modes result in this case. Since the CP method gives real-valued de-mixing

matrix, the theoretical complex modes are transformed into real modes using the

standard method described in Ref. [93], such that the accuracy of the identified

vibration mode matrix (modeshapes) can be evaluated using Eq. (2.24). The iden-

tification results are listed on Table 2.7 and 2.8, also shown in Fig. 2.8. It is seen

that the identified modal parameters agrees fairly well with those theoretical results,

indicating that the CP method suffers little in the presence of the non-proportional
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high damping and provides excellent approximation to the complex modes in both

free and random vibration. On contrary, it is noticed in Ref. [93] that SOBI loses

accuracy even in the light damping case of this non-diagonalizable damped model,

and the modified SOBI method only addresses the lightly-complex modes.

Table 2.7 : Identified results of free vibration in non-proportional high damping

Frequency (Hz) Damping ratio (%)
MAC

Mode Theoretical Identified Theoretical Identified

1 0.1343 0.1367 10.8998 10.9694 0.9843

2 0.2454 0.2441 6.8853 6.7217 0.9510

3 0.5094 0.4980 4.8827 4.6758 0.9823

Table 2.8 : MAC results in random vibration (non-proportional high damping)

Stationary GWN Non-stationary WN

Mode 1 2 3 1 2 3

MAC 0.9974 0.9991 0.9894 0.9978 0.9916 0.9892

2.4.5 Identification of a 12-DOF system & comparing to SOBI

To show that the CP method is suitable for large-scale structures with more DOFs,

a 12-DOF system (Fig. 2.9) is set up (larger system can also be built), i.e., m1 =

2,m2 = ... = m11 = 1,m12 = 3, k1 = k2 = ... = k13 = 1, and C = αM with α = 0.03.

The first four natural frequencies of the structure are 0.0378, 0.0716, 0.0990, 0.1250

Hz, respectively. Impact or Gaussian white noise excitation is induced at the 6th DOF

(mass) and the 200-second system responses are used with a sampling frequency of 10
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Figure 2.8 : The modal responses recovered by CP in free vibration (non-proportional
high damping case).

Hz. Both the CP method and SOBI method are performed directly on the measured

system responses.

For the CP method, hS = 1 is a fixed setting, and hL ≫ hS is required. The MAC

results using a wide range of values of hL between 100 and 900, 000 are presented in

Fig. 2.11, as well as the corresponding computational time. For random vibration,

the results are averaged over 100 tests.

It is seen both for free or random vibration, the MAC values are very high and

the computational time is quite little, both of which remain stable with varying

hL values, indicating that CP efficiently provides reliable modal parameters without

adjusting the parameters. Note that the lower MAC of the 11th mode (shown as

green star marker in Fig. 2.11) is because it is not well excited, as it is rarely present

in the structural responses. The frequency and damping ratio can also be accurately
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identified from the simultaneously recovered time-domain modal responses; they are

not presented here, however.

Comparisons with SOBI are also conducted on the same set of structural responses,

and its performance with different lag parameters is shown in Fig. 2.11. It is seen that

SOBI’s accuracy depends on the lags, and the computational time increases linearly

with increasing lags. Table 2.9 lists some of the MAC results by CP and compared

with SOBI method.

Figure 2.9 : The 12-DOF linear mass-spring damped model

2.4.6 Identification of a distributed-parameter beam

This section considers applying CP to identify a two-dimensional distributed-parameter

fixed beam model (Fig. 2.12). The parameters of the beam are set similar with those

presented in Kerschen et al. [74]: the Young’s module is 200 GPa, the density is 7800

kg/m2, the cross section dimension is 0.014× 0.014 m, the length of the beam is 0.7

m, and the damping matrix is set C = 2 ·M+2× 10−6 ·K. The beam is modeled by

finite element method, divided into seven elements, and each node has three DOFs:

axial, vertical, and rotational, resulting in n = 3×6 = 18 DOFs of the structure. The

first four natural frequency of the structure are 148.74, 410.38, 806.85, and 1342.12

Hz. A vertical velocity is induced in the 2nd node and the structural responses are

computed/recorded only at m = 6 (vertical) sensors with a sampling frequency of
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Table 2.9 : Identification results of MAC by SOBI and CP of the 12-DOF structure
(hL = 900, 000).

Free vibration Random vibration

Mode
SOBI SOBI SOBI

CP
SOBI

CP
(20 lags) (50 lags) (200 lags) (200 lags)

1 1.0000 0.9999 1.0000 1.0000 0.9995 1.0000

2 0.9900 0.9092 0.9935 0.9991 0.8641 0.9822

3 0.9965 0.9840 0.9987 0.9993 0.9718 0.9945

4 0.9926 0.9768 0.9981 0.9993 0.9699 0.9915

5 0.9897 0.9862 0.9982 0.9996 0.9776 0.9882

6 0.9865 0.9918 0.9992 0.9995 0.9843 0.9900

7 0.9708 0.9933 0.9982 0.9987 0.9671 0.9970

8 0.9822 0.9967 0.9993 0.9991 0.9843 0.9847

9 0.9150 0.9778 0.9939 0.9919 0.9098 0.9833

10 0.9891 0.9943 0.9985 0.9987 0.9780 0.9922

11 0.6541 0.6724 0.7988 0.6706 0.5322 0.4130

12 0.9970 0.9981 0.9990 0.9993 0.9839 0.9984

Computational

time (sec)
0.0427 0.0731 0.1256 0.0047 0.1684 0.0028

10,000 Hz. The time history is recorded for one second.

CP extracts 6 modes from the structural responses. Table 2.10 shows that the CP

modes match the theoretical modeshapes very well. It is seen that SOBI also provides

reasonable identification, but the lag parameter affects the accuracy of SOBI. CP

yields good accuracy and computational efficiency.
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Table 2.10 : MAC results by SOBI and CP of the beam model in free vibration.

Mode
SOBI SOBI SOBI SOBI CP

(20 lags) (50 lags) (200 lags) (900 lags) (hL = 900, 000)

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 0.9999 1.0000 1.0000

3 1.0000 0.9996 0.9994 1.0000 1.0000

4 0.9607 0.7555 0.7836 0.9842 0.9980

5 0.9939 0.9881 0.9809 0.9985 0.9993

6 0.9828 0.9663 0.9160 0.9972 0.9992

Computational

time (sec)
0.3891 0.9050 3.4754 15.1780 0.1607

2.5 Experimental verification

A three-story steel frame model (Fig. 2.13(a)) is built to experimentally investigate the

capability of the CP modal identification method. The structural model is dominated

by the masses on each floor, which are framed by two steel columns. The base of the

model is fixed on the shaking table, which is controlled by a feedback control system.

Accelerometers are attached on top of the masses to record the system responses.

Band-limited white noise excitation is generated at the base by the shaking table,

and the measured responses are recorded by the National Instrument data acquisition

system. The original sampling frequency is set 5128 Hz.

For more efficient computation, the measured data are down-sampled by a factor

of 128, and then the CP method is directly applied on the data without additional

preprocessing. The measured system responses and recovered modal responses are de-
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picted in Fig. 2.14 to Fig. 2.15, which clearly indicate that the coupled random system

responses are completely separated into three mono-component modal responses.

The classic peak-picking (PP) method is also implemented to identify modal in-

formation of the system; it uses both the input excitation and output information.

In this method, the chirp sinusoid wave is applied to excite the system at the base;

besides, one additional accelerometer is attached on the surface of the shaking table

to record the input signal.

The identification results are summarized in Table 2.11. The identified frequency

in both methods matches fairly well, and the high MAC values in all the three

modes indicate high correlation of the mode shapes identified by the two methods

(Fig. 2.13(b)). While giving comparable accuracy with the input-output PP method,

the CP method needs no input excitation information; such an advantage is attractive

in applications when the excitation is not available or extremely difficult to obtain.

Besides, the CP method is straightforward to implement with little interactions with

the users.

Table 2.11 : Experimental results

Frequency (Hz)
MAC

Mode PP CP

1 2.550 2.600 1.0000

2 7.330 7.395 0.9993

3 10.460 10.720 0.9997
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2.6 Seismic application

The proposed method is also applied on the seismic responses of the USC hospital

building (Fig. 2.16(a)) from the Northridge earthquake in 1994. It is a highly-damped

(the damping ratio of the 1st mode is as high as 14%) eight-story base-isolated nonlin-

ear system [100][98]. The base and three stories (4th, 6th, and the roof) are embedded

with sensors. A segment of the recorded seismic responses in the North-South direc-

tion from the latter three sensors (#12, 17, and 21 in Fig. 2.16(a)) are used, which is

from 15-30 second, sampled at 100 Hz.

A preliminary observation of the PSD of the system responses in Fig. 2.17 shows

that only the first three modes are visible (the 3rd mode is marginally present,

though). This is quite common in the seismic responses of structures that the re-

sponses in low frequency (lower modes) are usually dominant. On the other hand,

it implies that using few sensors may be sufficient to identify the active modes of

structures subjected to the seismic excitation, such like this example.

The identified results by the CP method are listed in Table 2.12, as well as the

recovered modal responses shown in Fig. 2.18. Note that a 3D analytical model has

been previously developed [100] such that analytical results are available as reference

for comparison. As can be seen, the results by the CP method satisfactorily match the

analytical results in both the frequency and mode shape identification (Fig. 2.16(b)).

Compared with the first two identified modeshapes with high MAC values, the lower

MAC value in the 3rd mode is primarily because it is not reasonably excited out.

This is seen from the PSD of the system responses (Fig. 2.17) that the 3rd mode is

rarely present, while the first two modes are quite active. It is on the other hand

a generic requirement for output-only methods (even input-output ones) that the

modes be reasonably excited out. This is also discussed in the time-frequency ICA
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method [145] proposed by the authors, where the identified 3rd modeshape does not

quite match the analytical one.

Table 2.12 : Identification of the USC hospital building

Frequency (Hz)
MAC

Mode Analytical CP

1 0.746 0.768 0.9751

2 1.786 1.907 0.9054

3 3.704 3.941 0.7874

2.7 Summary

This chapter presents a new time-domain output-only modal identification method

using the novel BSS learning rule CP by exploiting the signal property itself of the

available system responses and the underlying modal responses. Stone’s theorem for

CP is investigated in detail and found to be particularly suitable for modal iden-

tification using the proposed concept of independent “physical systems” on modal

coordinates.

The CP method is illustrated with numerical simulations to address modal iden-

tification for both proportional damped (well-separated and closely-spaced modes)

and non-proportional highly-damped (complex modes) structures in free and random

vibration. In all the studied cases, CP method holds accuracy, as well as robustness

against noise contamination. In addition, the high-level damping has little influence

on the CP method; this is expected as long as the independent ”physical systems”

on modal coordinates are valid.



www.manaraa.com

61

The CP method is also applied to an experimental model and a real-world seismic-

excited structure, which generally possess complex modes; it provides excellent esti-

mation of the modal information of structures in practice.

Inheriting the virtues of BSS algorithms, the proposed CP method realizes blind

identification of structural modal information; it is completely unsupervised, i.e., it

needs no input excitation information or any information with respect to the struc-

ture. This advantage is evident from the experimental study where the CP method

is able to perform reliable output-only identification, as compared to the traditional

modal analysis technique which is based on input-output relationship.

The CP method has a straightforward and efficient implementation to perform

completely blind identification of modal parameters of a wide range of structures,

and it is therefore suitable for on-line identification as well as for off-line applications.

As CP assumes a square BSS model, i.e., the sensor number equals that of the active

mode number, a method addressing the problem with only limited sensors needs to

be further developed, which is the topic of the next chapter.



www.manaraa.com

62

(a)

(b)

Figure 2.10 : The CP performance with varying long-term parameter hL in (a) free
vibration and (b) random vibration. (The star markers are the MAC values of 12
modes using the left y-axis and the circle markers are computational time using the
right y-axis.)
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(a)

(b)

Figure 2.11 : The SOBI performance with varying lag parameters in (a) free vibration
and (b) random vibration. (The star markers are the MAC values of 12 modes using
the left y-axis and the circle markers are computational time using the right y-axis.)
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Figure 2.12 : The distributed-parameter fixed beam model with seven elements and
six vertical sensors. Each node has three DOFs.

(a) (b)

Figure 2.13 : (a) The experimental model; (b) the identified modeshapes by CP and
PP.
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Figure 2.14 : The measured system responses of the experimental model subject to
white noise excitation.

Figure 2.15 : The modal responses recovered by CP of the experimental model subject
to white noise excitation.
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(a) (b)

Figure 2.16 : (a) The USC hospital building and its sensor location; (b) the identified
modeshapes compared with the analytical ones.

Figure 2.17 : The measured system responses of the USC hospital building in the
Northridge earthquake 1994.
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Figure 2.18 : The modal responses recovered by CP of the USC hospital building in
the Northridge earthquake 1994.
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Chapter 3

Sparse Clustering of Modal Expansion

Chapter 2 explores the signal complexity of the available structural responses and the

underlying modal responses and presents a data-driven output-only modal identifica-

tion method based on the complexity pursuit (CP) technique. CP (as well as other

existing BSS based methods) assumes the number of sensors equal that of the active

modes, which may not be satisfied in many applications with limited measurement

sensors; e.g., for a large-scale or complex structure, sensors may be inadequate com-

pared to the number of active modes. This chapter explicitly exploits the implicit

sparse nature of the underlying modal responses and interprets the modal expan-

sion in a sparse data-clustering perspective, thus developing a fairly straightforward

and efficient output-only modal identification method based on sparse component

analysis (SCA) [148], which is applicable for both determined and underdetermined

output-only modal identification problems with limited sensors.

3.1 SCA for modal identification

The targeted modal responses, which are viewed as sources in the BSS framework,

are monotone, implying that they are active at only one distinct frequency, respec-

tively. Therefore, they are most sparsely and disjointly distributed in the frequency

domain and naturally satisfy the source sparsity assumption of SCA [53][54]. Hence,

transform the modal expansion Eq. (2.13) (with m sensors and n modes) into the
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sparse frequency domain to incorporate modal identification to the SCA framework,

x(f) = Φq(f) =
n

∑

i=1

ϕiqi(f) (3.1)

with

x(f) = F(x(t)) =
∫

∞

−∞
x(t)e−j2πftdt

q(f) = F(q(t)) =
∫

∞

−∞
q(t)e−j2πftdt

(3.2)

where F , f , and j denote the Fourier transform operator (on each xi(t) or qi(t)

separately), frequency index, and the imaginary operator, respectively. Note that F

is an invertible linear transform; it holds the form of the modal expansion such that

Eq. (3.1) is valid and Φ remains invariant.

To avoid complex elements in Eq. (3.1), it is more practical to use the cosine

transform F c (also linear) to yield real-valued x(f), simply replacing the Fourier

basis e−j2πft with the cosine basis cos 2πft in Eq. (3.2). The discrete cosine transform

(DCT) is popularly used in data compression of audio (e.g., MP3) and image (e.g.,

JPEG) [117], where it outperforms the standard discrete Fourier transform (DFT).

The DCT is adopted in the proposed SCA method, then x(f) and q(f) are understood

as real-valued cosine transform coefficients.

Using the disjoint sparsity property of modal responses with distinct frequencies,

at some fk where only one modal response qj (j = 1, ..., n) is active and qi = 0 for

i 6= j, Eq. (3.1) becomes

x(fk) = ϕjqj(fk) (3.3)

Therefore, the points of x(f) will cluster to the direction of the jth modeshape ϕj

(j = 1, ..., n), such that the estimated vibration mode matrix Φ̃ can be extracted by

the automatic FCM clustering algorithm [15].

For determined case (m = n), Φ̃ ∈ R
m×n is square, and the time-domain modal
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responses can be recovered directly by

q̃(t) = Φ̃−1x(t) (3.4)

From which the frequency and damping ratio can be estimated by straightforward

Fourier transform and logarithm decrement, respectively. In underdetermined case

(m < n), Φ̃ ∈ R
m×n is rectangular. Therefore, the frequency-domain modal sources

q̃(f) is first recovered using the sparsity-seeking ℓ1-minimization (P1), at each f ∈ Ω,

(P1) : q̃(f) = arg min‖q(f)‖ℓ1 subject to Φ̃q(f) = x(f) (3.5)

where ‖q(f)‖ℓ1 =
n
∑

i=1

|qi(f)|. (P1) is a well-defined convex optimization problem

whose solution is guaranteed to be globally optimal, and can be efficiently solved by

standard linear programming techniques [24].

The ℓ1-minimization, as the tightest convex relaxation of the non-convex ℓ0-

minimization (simply counting the non-zeros of a vector, see Section 1.3.1 in Chapter

1), is able to find the sparsest solution with minimal ℓ1-norm that explains the ob-

servations x(f) [42][20]. The validity of this strategy resides in the ability of the

ℓ1-minimization to recover the sparsest solution to Eq. (3.5), which is exactly the de-

sired monotone frequency-domain modal responses since they are the sparsest solution

among all feasible solutions to Eq. (3.5).

The advantages of using cosine transform in Eq. (3.1) are now evident: using

Fourier transform would otherwise render complex entries of x(f) in both Eq. (3.3)

and Eq. (3.5). In such a case, x(f) would cluster to both real and imaginary axis,

and solving (P1) would also require implementations on both real and imaginary axis

to recover the sparse complex Fourier coefficients of the modal responses. The use of

the cosine transform on the other hand results in real-valued x(f), upon which it’s
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simpler for the clustering algorithm and (P1) to conduct and saves at least half of the

computational burden.

Using the inverse cosine transform, the time-domain modal responses can be read-

ily recovered by

q̃(t) = F c−1(q̃(f)) (3.6)

thereby estimating the frequency and damping ratio.

Also note that the proposed SCA method is not applicable to identify highly non-

diagonalizable damped structures, where both Φ and q(f) would be highly complex.

In this situation, qj(fk) and the clustered direction ϕj would both be complex, which

may not be extracted directly by the clustering algorithm of SCA, thus unable to

obtain the mode matrix Φ̃. For those with weakly-complex modes, however, SCA

may provide reasonable identification, since a real-valued constant scale difference

qj(fk) approximately holds between the weakly-complex ϕj and x(fk). Refer to [148]

for more details.

3.2 Numerical simulations

The developed SCA is performed for modal identification. The time-domain system

responses are first windowed by the Hanning function and then transformed into the

frequency domain using DCT with 1024 samples. The mode matrix (partial in the

underdetermined case) is then obtained using the automatic clustering algorithm:

the DCT coefficients are first normalized [77] and then fed as inputs to the FCM

clustering algorithm.

With the estimated mode matrix, in the determined case, the time-domain modal

responses are directly recovered using Eq. (3.4) to obtain the time-domain modal

responses. For the underdetermined situation, the frequency-domain modal responses
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are recovered by ℓ1-minimization (P1) solving 1024 underdetermined linear systems of

equations (because of a 1024-point DCT), each of which is of scale 2×3 (in the 3-DOF

system example) or 2×6 (in the 6-DOF system )-the computation is nevertheless fairly

efficient, as will be discussed later. Inverse DCT and multiplication of the inverse

Hanning window are then subsequently conducted on the frequency-domain modal

responses to obtain the time-domain modal responses. Due to edge effects (mostly

from windowing and its inverse operator), few samples (here 50 samples, but may be

arbitrary as long as the envelop of the recovered modal response is clear for damping

estimation) at two ends of the recovered time-domain modal responses are truncated.

Frequency and damping ratio are estimated from the time-domain modal responses

by Fourier transform and logarithm decrement, respectively. The correlation between

the estimated modeshape ϕ̃i (i = 1, ..., n ) and theoretical modeshape ϕi is evaluated

by the MAC (Eq. (2.24)). In underdetermined cases, the MAC indicates the accuracy

of the clustering algorithm in estimating the directions of the partial modeshapes.

3.2.1 Closely-spaced modes

To demonstrate the capability of the SCA method for identification of closely-spaced

modes, a model is set up with the following parameters borrowed from Ref. [93] for

direct comparison with the existing SOBI and the modified SOBI method,

M =













1 0 0

0 2 0

0 0 1













K =













5 −1 0

−1 4 −3

0 −3 3.5













C =













0.0894 −0.0084 0.0003

−0.0084 0.1301 −0.0244

0.0003 −0.0244 0.0772













(3.7)

It is seen from Fig. 3.1 that the 2nd and the 3rd modes are very closely-spaced.

The SCA method is performed, and the results are shown in Fig. 3.2- 3.4. Fig. 3.2(a)
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Figure 3.1 : The free-vibration system responses (closely-spaced modes case).

shows that in the underdetermined case, the closely-spaced modeshape directions in

the scatter plot of the frequency-domain responses are still significant to distinguish,

and the SCA method is capable of accurately recovering even the closely-spaced

(2nd and 3rd) modal responses whether in determined (Fig. 3.3) or underdetermined

case (Fig. 3.4). Table 3.1 shows that the identified parameters match fairly well

those theoretical ones. Note that the SOBI method shows clear degradations for

identification of these close modes, as seen in Ref. [93]. Also, with comparable

accuracy, the SCA method tends to have simpler implementation than the modified

SOBI method with quite a few preprocess steps and parameters to adjust [93]; besides,

SCA can additionally handle even the underdetermined situation well.

It is known that traditional methods may meet difficulty in identification of close
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modes when noise is present. To see the robustness performance of the SCA method

in such a case, 10% RMS (SNR=20 dB) Gaussian white noise is added to the system

responses. It is seen that the dominance of the modeshape directions still holds in

the scatter plot (Fig. 3.2(b)), and the modal responses are recovered well by the SCA

method (Fig. 3.5); similar accuracy is also observed in the determined identification.

The SCA method seems to hold well in identification of the close modes in noisy

environment.

Another example is shown that the SCA method is also appropriate for identifica-

tion of closely-spaced modes coupled with high damping, where the damping matrix

in Eq. (3.7) is changed to C = αM, and α = 0.13. Fig. 3.6 shows that the 2nd and

3rd modes are completely merged and indistinguishable in the PSD of the system re-

sponses. The identification results are presented in Table 3.2 and Fig. 3.7 shows the

recovered modal responses in the underdetermined case. Clearly the SCA method has

excellent performance in identification of the closely-spaced highly-damped modes.

Table 3.1 : SCA identification of the numerical model (closely-spaced modes)

Frequency (Hz) Damping ratio (%) MAC

Mode Exact Deter- Under- Exact Deter- Under- Deter- Under-

1 0.1039 0.1074 0.1074 4.00 4.00 3.97 1.0000 1.0000

2 0.3425 0.3418 0.3418 2.00 1.88 2.23 0.9998 0.9992

3 0.3713 0.3711 0.3711 2.00 1.84 2.17 0.9991 0.9999
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Table 3.2 : SCA identification of closely-spaced highly-damped modes

Frequency (Hz) Damping ratio (%) MAC

Mode Exact Deter- Under- Exact Deter- Under- Deter- Under-

1 0.1039 0.1074 0.1074 9.95 10.00 9.96 1.0000 1.0000

2 0.3425 0.3418 0.3418 3.02 3.14 3.41 0.9999 0.9984

3 0.3713 0.3711 0.3711 2.79 2.81 2.93 0.9996 0.9999

3.2.2 A 6-DOF system example

The SCA modal identification method with the FCM clustering algorithm and ℓ1-

minimization makes no assumption of the dimension (DOFs) of the system; it can be

applied to large-scale structures. For demonstration, a 6-DOF system is set up whose

parameters are similar with the 3-DOF system in Fig. 2.1, that is, m1 = 2,m2 =

m3 = m4 = m5 = 1,m6 = 3 , k1 = k2 = k3 = k4 = k5 = k6 = 1, and C = αM,

α = 0.08.

After applying SCA, in determined case, the MAC values for the six modes are

0.9993, 0.9992, 0.9995, 0.9999, 0.9998, and 0.9974, respectively, and the recovered

modal responses are monotone with clear exponentially decaying envelops. In un-

derdetermined case, only the first two sensors are used to recover all the six modes.

Still, its scatter plot signifies six significant partial modeshape directions (Fig. 3.8),

and the recovered modal responses by the SCA method in the underdetermined case

are very accurate (Fig. 3.9). It is worth mentioning that the method proposed in

Ref. [2] for underdetermined modal identification requires at least four sensors to re-

cover six modes and only two modes are identifiable with two sensors there, whereas

SCA recovers all the six modes using only two sensors. This is because as long as
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the solution is sparse, ℓ1-minimization guarantees to find it even from dramatically

few observations (sensors)–in fact, larger scale (more DOFs or more active modes

present) makes the solution even sparser since the targeted modal response is always

monotone at its single active frequency.

It is also found that the FCM clustering algorithm for estimation of the mode-

shapes and the ℓ1-minimization (P1) for sparse recovery in the underdetermined cases

are both very efficient. In this example, ℓ1-minimization needs to solve 1024 underde-

termined linear systems of equations, each of which is of size 2×6; which may appear

as heavy computational burden at first sight. However, it converges at a fairly fast

rate and conducting for 1024 times costs little computational effort. This is because

(P1) is a well-defined convex optimization problem, which can be solved by the ma-

ture linear program technique at little computational expense, even for large-scale

underdetermined problem [24]-although the scale in this example (2× 6) is not large.

3.3 Experimental verification

The developed SCA modal identification method is also validated by analysis of an

experimental model. It is a fixed-base three-story steel frame (Fig. 2.13(a)) with

dominant mass on each floor, on top of which the accelerometers are attached to

record system responses. Impact excitation is applied to induce free vibration and

the system response data are measured by the National Instrument data acquisition

system. The sample frequency is originally set at 5128 Hz.

To yield efficient computation without loss of accuracy, the measured data are first

down-sampled by a factor of 32, and the procedures of the proposed SCA method

is then performed on the data with a Hanning window length of 1024 (Fig. 3.10).
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Fig. 3.12 depicts the scatter plots in frequency domain of the system responses in the

determined case using all three sensors as well as that using only Sensor 1 (1st floor)

and 2 (2nd floor), both revealing three significant clustered (modeshape) directions

which are estimated by the FCM clustering algorithm. Fig. 3.13 and 3.14 show

that the recovered modal responses in both cases approach quite well the monotone

exponentially decaying sinusoids.

Previously the classical peak-picking (PP) method is conducted to identify this

model, as already introduced in Section 2.5 of Chapter 2. The detailed identification

results are listed in Table 3.3. The identified frequencies by SCA in both determined

and underdetermined cases agree well with those by PP, and the MAC values show a

high correlation of the identified modeshapes (Fig. 3.11) by these two methods. Note

that the damping ratio is not estimated by the PP method since it requires additional

processing technique to obtain free vibration for reliable estimation. However, the

damping ratio estimated by SCA in the determined and underdetermined cases has

reasonable match.

This experimental example validates that the output-only SCA method provides

comparable accuracy with the input-output PP method, and yet has advantage

of without using input information. Also, the SCA method is automatic, non-

parametric, and completely unsupervised, capable of blindly identify modal infor-

mation directly from system responses. Comparing the underdetermined case to the

determined one, the underdetermined SCA gives equally good performance using

fewer sensor measurements; this is promising when sensors are limited.
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Table 3.3 : Identification results of the experimental model

Frequency (Hz) Damping ratio (%) MAC

Mode PP Determined Under- Determined Under- Determined Under-

1 2.55 2.66 2.66 1.12 1.04 0.9997 0.9995

2 7.33 7.51 7.51 1.08 1.03 0.9997 0.9996

3 10.46 10.80 10.80 0.68 0.67 0.9988 1.0000

3.4 Summary

This chapter exploits the sparse nature of the underlying modal responses, proposing

an SCA based method to perform output-only modal identification of linear sys-

tems, which interprets the modal expansion in a sparse data-clustering perspective.

Compared to existing BSS-based modal identification method, the developed SCA

algorithm is not only suitable for determined situation, but also capable of identify-

ing modal information when sensors may be highly limited compared to the number

of active modes, using the powerful and efficient ℓ1-minimization technique for sparse

recovery.

The SCA method drops the independence assumption used by most BSS tech-

niques; instead, it presumes that sources are sparsely represented in some transformed

domain. Based on this principle, the developed SCA method reveals the essence of

modal expansion that the monotone modal responses with disjoint sparsest represen-

tations in frequency domain naturally cluster to the directions of the modeshapes,

which can be readily estimated by a simple automatic clustering algorithm. This

surprisingly simple strategy makes the SCA method intuitive and user-friendly for

modal identification. Further, ℓ1-minimization enables SCA to recover all the active
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modes even with dramatically few sensors.

The experimental example also show the SCA method provides comparable ac-

curacy with traditional methods (e.g., PP) that use both system input and output

information, while it depends only on measured responses, as long as which are dom-

inated by resonant responses. This advantage makes SCA useful when measurement

of excitation is impossible or extremely expensive.
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(a)

(b)

Figure 3.2 : The scatter plot in frequency domain of the system responses using
Sensor 1 and 2 with (a) no noise; (b) 10% RMS noise. (closely-spaced modes case)
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Figure 3.3 : The modal responses recovered by SCA in the determined case using all
the three sensors (closely-spaced modes case).

Figure 3.4 : The modal responses recovered by SCA using Sensor 1 and 2 (closely-
spaced modes case).
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Figure 3.5 : The noisy modal responses recovered by SCA using Sensor 1 and 2 with
10% RMS noise (closely-spaced modes case).

Figure 3.6 : The free-vibration system responses (close modes coupled with high
damping case).
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Figure 3.7 : The modal responses recovered by SCA using Sensor 1 and 2 (close modes
coupled with high damping case).

Figure 3.8 : The scatter plot in frequency domain of the system responses using
Sensor 1 and 2 of the 6-DOF system.
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Figure 3.9 : The six modal responses recovered by SCA using Sensor 1 and 2 of the
6-DOF system.
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Figure 3.10 : The free-vibration system responses of the experimental model.
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Figure 3.11 : The estimated modeshapes by the FCM clustering algorithm in SCA
(dashed line) compared to those by the PP method (solid lines).
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(a)

(b)

Figure 3.12 : The scatter plot in frequency domain of the system responses of (a) all
three sensors; (b) Sensor 1 and 2 in the experimental model.
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Figure 3.13 : The modal responses recovered by SCA using all the three sensors of
the experimental model.

Figure 3.14 : The modal responses recovered by SCA using Sensor 1 and 2 of the
experimental model.



www.manaraa.com

89

Chapter 4

Damage Identification via Sparse Representation

The developed output-only modal identification methods in the previous Chapter

2 and Chapter 3 benefit from the methodology of harnessing the signal property

or structure itself of the structural responses and the underlying modal responses.

In the data-driven framework, this chapter continues to exploit the signal signature

(the sparse pulse-like feature) hidden in the multi-channel structural responses and

establishes a new output-only data-driven damage identification method which is able

to simultaneously identify both damage instants and damage locations in single or

multiple damage events.

4.1 Introduction

As reviewed in Section 1.2.2 of Chapter 1, many existing signal-based techniques have

shown significant promise in extracting damage information from measured structural

response data; as opposed to structural model (physical or modal) based methods,

they feature efficient computation and make no prior assumption with respect to the

structural model, which makes them enjoy broader applicability in damage identifica-

tion. However, reliable damage identification requires careful parameter adjustments

by users and shows significant degradations when influenced by measurement noise

(e.g., see Fig. 1.2).

Independent component analysis (ICA) [65] is a powerful multivariate data anal-
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ysis tool. As an unsupervised (blind) learning algorithm, ICA is able to reveal the

characteristic factors hidden in the data using only the observed mixture signals;

it has seen various successful applications reported in acoustic [12], communication

[87], neural science [89], financial data [8], also in structural dynamics [6], system

identification [74][145], and condition monitoring [154][161].

This chapter presents the application of ICA for blind identification of structural

damage. It is first justified that ICA’s learning rule leads to extract the sparse compo-

nent, typically indicating damage information (manifesting itself as sparse pulse-like

signature), hidden in multi-channel data. Following this finding, structural vibration

response data are first transformed into the wavelet domain and then fed as mixtures

into the blind source separation (BSS) model, which is analyzed by ICA, realizing

accurate and robust identification of both damage instant and location in single or

multiple damage events. It is validated by numerical simulations, experimental study,

and real-world seismically excited buildings.

4.2 Wavelet transform (WT)

As discussed, the interesting property (e.g., the sparse pulse-like feature which typi-

cally indicate damage (Fig. 1.7)) may be revealed on certain wavelet scales (Fig. 1.2(a)

and the theoretical background of wavelet transform (WT) has been reviewed in Sec-

tion 1.3.1 of Chapter 1). However, it is easily destroyed by noise (Fig. 1.2(b)). ICA

is capable of extracting the buried pulse-like feature from the noisy wavelet-domain

signals, as detailed in the following.
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4.3 Independent component analysis (ICA) & damage iden-

tification

This section deduces that ICA possesses a learning rule that naturally recovers sparse

component, and establishes a new WT-ICA framework for damage identification,

revealing both damage instant and location.

4.3.1 The principle of ICA estimation

ICA is popularly used to estimate the blind source separation (BSS) model [65],

x(t) = As(t) =
n

∑

i=1

aisi(t) (4.1)

using only the observed mixture vector x(t) = [x1(t), x2(t), ..., xm(t)]
T ; A and s(t) =

[s1(t), s2(t), ..., sn(t)]
T are the unknown constant m × n linear mixing matrix and

the latent source vector, respectively, to be simultaneously estimated. ai is the ith

column of A and associated with the corresponding source si(t). The assumption of

m = n is imposed herein, i.e., the number of mixtures equals that of the sources and

A is square. With only x(t) known, Eq. (4.1) may not be mathematically solved by

classical method; additional assumption is thus needed to estimate the BSS model.

ICA treats the mixture and source signals as random variables and incorporates

the BSS model into a statistical framework. It makes little assumption that the

sources are statistically independent at each time instant, and in most applications,

this is sufficient to estimate the BSS or ICA model [65].

The principle of ICA estimation is based on the classical central limit theorem

(CLT), which states that a sum of independent random variables tends to distribute

towards Gaussian, i.e., a mixture of independent random variables is always more

Gaussian than any one of the original variables (except that the mixture only contains



www.manaraa.com

92

one random variable). As seen in Eq. (4.1), mixtures are expressed as a weighted sum

of the sources; they are thus always more or equally Gaussian than the sources. This

conclusion lays the foundation of the ICA learning rule, which searches for proper

de-mixing matrix W (as the estimation of the inverse of A) such that the recovered

independent components (ICs) y(t) = [y1(t), y2(t), ..., yn(t)]
T obtained by

y(t) = Wx(t) (4.2)

are as non-gausssian as possible and thus approximate the sources s(t). Each IC yi(t)

is computed by

yi(t) = wix(t) (4.3)

withwi the ith row ofW. This ICA learning principle can be explained by conducting

a variable transformation

zi = wiA (4.4)

and substituting into Eq. (4.3),

yi(t) = wix(t) = wiAs(t) = zis(t) (4.5)

Eq. (4.5) shows that the IC yi(t) is also a weighted sum of the sources. According

to CLT, yi(t) will always be more Gaussian than any of the sources unless it equals one

of the sources, in which case yi(t) becomes least Gaussian. By searching for those ICs

which maximize non-gaussianity, the sources (and simultaneously the mixing matrix)

can therefore be recovered by ICA.

Non-gaussianity of a random variable υ can be measured by some contrast func-

tion, e.g., negentropy. A simplified approximation to the negentropy is the classical

kurtosis [65], which is defined by

kurt(υ) = E[υ4]− 3(E[υ2])2 (4.6)
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where E[·] denotes the expectation operator. The kurtosis of a Gaussian random

variable is zero, and that of a non-gaussian random variable is non-zero. It is easy to

estimate and computationally efficient. The more general definition and property of

negentropy is described in later section.

The ICA model estimation can therefore be summarized as to find a proper de-

mixing matrix such that the recovered ICs maximize the measure of non-gaussianity,

e.g., kurtosis. The FastICA is one of the most efficient algorithms implementing ICA

estimation, and is adopted in this study. More details can be found in [65].

4.3.2 Damage identification incorporated into ICA model

4.3.2.1 Non-gaussianity and sparsity

The entropy-based negentropy is another measure of non-gaussianity [65] which is

more statistically justified. The entropy of a discrete random variable υ = {υ1, υ2, ..., υi, ...}

is defined by

H(υ) = −
∑

i

p(υ = υi) · log p(υ = υi) (4.7)

or for a continuous random variable u

H(u) = −
∫

f(u) · log f(u)du (4.8)

where p(·) and f(·) are the probability mass and probability density operators, respec-

tively. Entropy measures the uncertainty or randomness of a random variable. For

example, for a random variable with pulse probability density function, its entropy is

zero, i.e., it is completely determined.

The Gaussian random variable has the largest entropy among all other random

variables with equal variance [36][65], i.e., it is the most random or uncertain one.



www.manaraa.com

94

On the other hand, a random variable with sparse representation has small entropy

as it is less random or easier to be predicted. This conclusion yields the definition of

negentropy as a measure of non-gaussianity given by

J(υ) = H(υgau)− H(υ) (4.9)

in which υgau is a standardized Gaussian random variable (zero-mean and unit vari-

ance); it quantitatively evaluates the entropy distance of a (standardized) random

variable υ from a Gaussian variable. Finding the ICs that maximize the negentropy

by ICA thus yields random variables with sparse representation. This finding turns

out very useful for damage identification, as subsequently described.

4.3.2.2 Extracting “interesting” sources by ICA for damage instant de-

tection

Damage is typically observed as local phenomenon [41], which may be revealed as

pulse-like information hidden in the structural vibration response signals on some

sparse domain (Fig. 1.7). As mentioned, the pulse-like feature containing damage

information may be buried in the noisy wavelet-domain signals on a certain scale

(Fig. 1.2). As ICA biases to extract sparse component from the (possibly very noisy)

observations, feed the wavelet-domain responses xl(t) at the lth scale as mixtures into

the BSS model,

xl(t) = As(t) (4.10)

If there is any pulse-like feature hidden in xl(t), ICA will extract it, which is to be

revealed in the recovered sparse component yj(t) with sharp spike indicating damage

by

y(t) = Wxl(t) (4.11)
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Such yj(t) is proposed as the “interesting” source to the damage identification frame-

work. Note that xl(t) inherit the time information of the responses; this implies

that the recovered “interesting” source yj(t) retains temporal signature of damage,

which is indicated by the instant location of the sharp spike. The simple example in

Fig. 1.13(b) in Chapter 1 serves to intuitively explain this conclusion that ICA is able

to reveal from the noisy observations the pulse-like feature which contains damage

information.

4.3.2.3 Spatial signature in BSS model for damage localization

Expanding the WT-BSS model Eq. (4.1) as

xl(t) =
n

∑

i=1

aisi(t)

xl1 =
n

∑

i=1

a1isi(t) = a11s1(t) + a12s2(t) + ...+ a1nsn(t)

xlj =
n

∑

i=1

ajisi(t) = aj1s1(t) + aj2s2(t) + ...+ ajnsn(t)

xln =
n

∑

i=1

anisi(t) = an1s1(t) + an2s2(t) + ...+ annsn(t)

(4.12)

Observe that the mixing coefficient aji locates the mixture and the source by its

indices j and i, respectively, and the column-wise vector ai = [a1i, a2i, ..., aji, ..., ani]
T

contains the spatial signature of the corresponding source si(t). Herein, ai and its

element aji are proposed as the source distribution vector (SDV) and source dis-

tribution factor (SDF), respectively; they describe how source si(t) is distributed

among n mixtures. Specifically, if aji has the largest (absolute) value among ai =

[a1i, a2i, ..., aji, ..., ani]
T , then xj(t) contains most si(t) component among all the n

mixtures.
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Take the case in Fig. 1.13(b) for example, the estimated mixing matrix (not nor-

malized) by ICA is Â =







0.0562 1.0186

0.0246 1.0186






. The first column corresponds to the SDV

of IC1 (“interesting” source) which is the recovered pulse-like source of interest. As

â11 is the largest among the SDV, it can be concluded that the mixture at the first

location x1(t) contains most s1(t) component (the pulse-like feature).

The proposed concepts of SDV and SDF are readily extended to damage localiza-

tion issue. As the structural response in the vicinity of damage naturally demonstrates

most spike-like features, damage can be localized by tracking the spike in the SDV of

the recovered pulse-like IC, which is the “interesting” source.

4.4 WT-ICA algorithm for damage identification

Summarizing the aforementioned formulations, the new WT-ICA algorithm is pro-

posed to perform blind identification of structural damage, exploiting the superior

properties of WT and ICA, respectively; it includes the following steps.

Step1. Transform the measured structural responses of each sensor location into the

wavelet domain, respectively, and select the decomposed signals on a certain WT scale

which are observed to contain most damage information (i.e., the pulse-like feature

hidden in the noisy wavelet transformed signals).

Step2. Feed the selected wavelet-domain signals on a certain scale at each sensor

location as mixtures into the BSS model, which is then solved by the FastICA algo-

rithm, thereby simultaneously obtaining the ICs and their associated SDVs from the

mixing matrix.

Step3. The sharp spike in the “interesting” IC (source) identifies damage occurrence

instant, while the outstanding spike in the corresponding SDV curve (transformed
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into absolute values) of the “interesting” source indicates damage location.

4.5 Numerical simulations

4.5.1 Model description

The 12-DOF numerical model depicted in Fig. 2.9 in Chapter 2 is used to validate

the proposed WT-ICA damage identification method. It is considered as a linear

system with time-varying stiffness. The parameters are set as follows: the mass is

m1 = 2,m2 = m3 = ... = m11 = 1,m12 = 3 , the spring stiffness before damage is

k1 = k2 = ... = k13 = 1, and proportional damping is considered with respect to the

mass matrix as C = 0.01M.

Damage is simulated by abrupt variation (reduction) of the spring stiffness at

certain locations and instants (e.g., Fig. 4.1(a) and 4.1(b)). Free vibration is induced

by imposing initial displacement on the DOF. Structural responses are recorded with a

sampling frequency of 20 Hz and a time history of 200 seconds. Zero-mean Gaussian

white noise (GWN) is added to the system responses to approach the structural

operating environment; a signal-to-noise (SNR) level of 50 dB is used herein. The

SNR of a signal is defined by

SNR = 20log10
RMS(signal)

RMS(noise)
(4.13)

where RMS denotes the root-mean-square operator of a signal. Various cases are

simulated to consider different damage scenarios, with different damage locations,

damage occurrence instants, and damage severity; they can be categorized into two

patterns: (1) single event; (2) multiple events which simulate a chain of evolutionary

damage scenarios.

The developed WT-ICA damage identification algorithm is implemented. The
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(a) (b)

Figure 4.1 : Damage scenarios for system with single and multiple time-varying stiff-
ness.

measured system responses at 12 sensors (DOFs) are preprocessed by the popular

db10 wavelet into 4 levels using the Fast DWT [90]. The decomposed signals at the

4th scale (these settings are unchanged throughout all examples in this study)–where

most damage information appears (pulse-like features hidden in the noisy wavelet

transformed signals) among all the scales–are then selected and fed as mixtures into

the BSS model. Subsequently, FastICA is performed on the formulated WT-BSS

framework using the kurtosis as the contrast function, thus obtaining the ICs and

mixing matrix. The IC with sharp spike is the “interesting” source indicating the

damage occurrence instant, and by examining the corresponding SDV, damage is

localized by the spike in the SDV curve.

4.5.2 Simulation results

4.5.2.1 Pattern 1: single event

The single damage event considers damage with different severity occurring at the

different locations and instants, respectively.
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Case 1 with different damage severity: (a) single 80% damage at Location 3-4 at

100th second; (b) single 50% damage at Location 3-4 at 100th second (Fig. 4.1(a));

(c) single 20% damage at Location 3-4 at 100th second.

Case 2 with different damage occurrence instant: (a) single 50% damage at Location

3-4 at 50th second; (b) single 50% damage at Location 3-4 at 150th second.

Case 3 with different damage location: (a) single 50% damage at Location 6-7 at

100th second; (b) single 50% damage at Location 9-10 at 100th second.

Case 1 (b) is used as a reference condition comparing the different damage sce-

narios. Due to space limitation, only the first four signals of the twelve are presented

in the figures. Fig. 4.2 show the damage identification results for Case 1(b) and 1(c).

It is found that WT-ICA is able to accurately identify damage instant and location

in all the cases. Specifically, the sharp spike in the wavelet domain gets buried

and can barely be observed in the wavelet-domain mixtures (Case 1(c) in Fig. 4.2).

However, the hidden pulse-like feature is accurately recovered by ICA, yielding IC1

with an outstanding spike as the “interesting” source which clearly indicates the

damage occurrence instant. Further, damage can be accurately localized by examining

the spike in the corresponding SDV curves of the “interesting” sources. In addition,

Fig. 4.3 shows that the accuracy of WT-ICA holds for different damage instant and

location cases, whereas Fig. 4.4(a) presents the comparison of the SDV curves with

different damage severity, illustrating that WT-ICA is suitable for both severe and

small damage.

4.5.2.2 Pattern 2: multiple events

In extreme events such as earthquakes and impacts, a chain of damage events may

occur within a short time. This section investigates the capability of WT-ICA in such
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Figure 4.2 : WT-ICA identification results of single damage events: Case 1(b) with
50% damage at Location 3-4 and at 100th second (grey line) and Case 1(c) with 20%
damage at Location 3-4 and at 100th second (black line).

Figure 4.3 : WT-ICA identification results of single damage events: Case 2(b) with
50% damage at Location 3-4 and at 150th second (grey line) and Case 3(a) with 50%
damage at Location 6-7 and at 100th second (black line).
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(a) (b)

Figure 4.4 : (a) The normalized SDV curves with (a) different damage severity in
Case 1, and (b) considering noise effects with different SNRs in Case 1(b).

cases simulated as follows.

Case 4. Multiple damage with different severity at different locations and different

instants: first 50% damage at Location 3-4 at 50th second, and then 80% damage at

Location 6-7 at 100th second (Fig. 4.1(b)).

Case 5. Single damage developed with different severity at different instants: single

20% damage at Location 3-4 first at 100th second, and then developed to 80% damage

at the same Location 3-4 at 150th second.

Case 6. Multiple damage at different location at the same occurrence instant: first

50% damage at Location 5-6 and then 50% damage at Location 9-10 both at 100th

second.

Fig. 4.5-4.7 show that WT-ICA is effective to detect and locate damage events

which subsequently happen within a short time. While the multiple singularities are

deeply buried in the wavelet-domain mixtures, ICA successfully reveals the damage in-

formation by the recovered ICs with sharp spike (i.e., the “interesting” sources). Take
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Case 4 for example where multiple damage occurs at different locations and different

instants, ICA extracts two ”interesting” sources with two sharp spikes in recovered

IC1 and IC2 (Fig. 4.5), respectively, accurately detecting two damage occurrence

instants. Besides, both of the corresponding SDV curves of the two “interesting”

sources show clear spikes which accurately localize damage. The identification results

in Fig. 4.6 and 4.7 for Case 5 and 6 also well match the predesigned multiple damage

scenarios.

4.5.2.3 Noise effects

To account for heavier measurement noise in practice, the system responses with de-

creasing SNR of 40dB, 35dB, 30dB, and 25dB are used to investigate the robustness

of WT-ICA damage identification method. The damage scenarios are also set the

same with Case 1(b). Although higher noise level brings disturbance to the “inter-

esting” source, as well as its SDV curve (Fig. 4.4(b)), especially when the SNR drops

to 25dB, it appears that the spikes in the “interesting” source and its SDV curve

(Fig. 4.4(b)) are still distinguished to realize damage identification. As the SNR de-

creases under 25dB, the fluctuation of the SDV curve in the undamaged location may

become comparable to the spike in the damaged location, thus making WT-ICA less

effective.

4.6 Experimental verification

Experimental study is also carried out to validate the method. The three-story scaled

steel structure (Fig. 4.8(a)) with dominant mass on each floor is subjected to band-

limited white noise excitation at the base. Four accelerometers are embedded to

record structural responses; three (#1,3,4) on the right on each floor and one (#2) on
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Figure 4.5 : WT-ICA identification results of multiple damage events: Case 4 with
50% damage first at Location 3-4 and 50th second and then 80% damage at Location
6-7 and 100th second.

Figure 4.6 : WT-ICA identification results of multiple damage events: Case 5 with
damage originated at Location 3-4 first 50% damage at the 50th second and then
80% damage at 100th second.
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Figure 4.7 : WT-ICA identification results of multiple damage events: Case 6 with
50% damage occurs at the 100th second and simultaneously at both Location 6-7 and
Location 9-10.

the left. During the test, the left column suddenly fractured due to damage at the weld

(near sensor #2) below the front beam of the 1st floor. The WT-ICA is performed on

the measured response data. A segment of 20-second recorded time history containing

the damage occurrence instant is shown in Fig. 4.8(b) and the identification results

are presented in Fig. 4.9. Obviously, damage information (spikes) is not evident in

the structural response time history or in wavelet domain. After conducting ICA,

the sharp spikes on the “interesting” source (IC1) and the corresponding SDV curve

clearly reveals the damage occurrence instant (at 10th second) and damage location

(#2 sensor), respectively, which agree well with the observed damage event.

4.7 Seismic-excited structure example

The WT-ICA method is applied to analyze the real-measured seismic responses of

the Los Angeles Fire Command and Control (FCC) building (Fig. 4.10(a)) from the
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1994 Northridge earthquake. The FCC building is a two-story base-isolated steel

frame structure [101][99], whose responses during the earthquake were recorded by

the instrumented sensors (Fig. 4.10(a)). Previous study [101] has shown that multiple

one-side impacts against the entry bridge (Fig. 4.10(c)) are observed from 12 second

to 16 second in the East-West (EW) direction during the earthquake. Nonlinear

behavior occurred due to the time-varying gap (Fig. 4.12(a)) and the entry bridge

which behaved as an impact element with time-varying stiffness. After about 16

second, the gap was completely open and the structure underwent vibration without

impacts.

The accelerations with 60-second time history from the nine channels (Sensor # 6

for Channel 1, # 7 for 2, etc) in the EW direction are used and transformed into the

wavelet domain (five channels with 0-30 second are depicted in Fig. 4.11). There seems

to be several sharp spikes in the original time histories and wavelet-domain responses,

which are quite noisy and may not lead to clear judgment. After conducting the ICA

on the wavelet-domain responses (detail signals on the 4th scale), multiple spikes are

clearly revealed and distinguished in the “interesting” ICs (Fig. 4.12(c)), in response

to multiple impact events. The first three ICs are selected as the “interesting” sources

with sharp spikes indicating multiple impact occurrence instants (Fig. 4.12(c)), which

agree well with the previous results in [101] with the most three dominant impacts

(Fig. 4.12(a)4.12(b)). The corresponding SDV curves are also presented, showing the

locations where the structure suffered from the impacts. It is seen that the peaks are

mostly distributed near the base and the roof on the SDV curves, which are quite

reasonable, as the impacts occurred directly at the base, and that the roof generally

suffered most abrupt drift (as shown in Fig. 4.10(b)) when the impact occurred and

is thus more prone to damage.
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(a) (b)

Figure 4.8 : (a) The experimental three-story frame and (b) recorded acceleration
responses.

Figure 4.9 : WT-ICA identification results of damage in the experimental system
excited by white noise.
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Figure 4.10 : FCC Building (a) Elevation, Plan, and Sensor Locations, (b) Analytical
Model, and (c) Entry Bridge and Isolation Gap.
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Figure 4.11 : The recorded structural seismic responses (five channels) and their WT.

4.8 Summary

By explicitly targeting the implicit sparse pulse-like damage feature in the multi-

channel structural responses, the chapter develops a novel data-driven output-only

damage identification method based on WT and ICA. It is found that ICA biases to-

wards sparse representation, which is proposed as the “interesting” source containing

targeted damage information hidden in the WT-domain structural responses mix-

tures which have been fed into the BSS model. The spatial signature contained in the

mixing matrix of the established WT-ICA framework is revisited in a novel perspec-

tive to admit the damage localization issue. Numerical, experimental, and real-world

seismically excited structures examples are presented to illustrate the method. The

proposed data-driven WT-ICA algorithm with efficient implementation and little user
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(b)

(c)

Figure 4.12 : (a) The time-varying gap size and gap stiffness in the FCC building
during the earthquake, (b) the recovered and computed impact force time history
from Ref. [90], and (c) selected “interesting” sources from ICA and the identification
results of the impact occurrence instants and potential damaged locations.

involvement has the potential for application in real-time structural health monitoring

and damage detection.
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Chapter 5

Sparse Representation Classification

The previous Chapter 4 exploits the sparse pulse-like damage feature hidden in the

multi-channel structural responses and develops a new output-only damage identifi-

cation method in the data-driven framework which is able to simultaneously identify

both damage instants and damage locations. This chapter addresses the problems of

both locating damage and further assessing damage severity within the classification

framework. The classification problem is revisited and the sparsity nature implied in

the classification problem itself is exploited, establishing a sparse representation clas-

sification framework–an intuitive non-parametric data-driven empirical classification

formulation–for damage identification, without a parametric classifier model or the

computationally-intensive training process.

5.1 Introduction

The damage identification problem in structural health monitoring (SHM) commonly

includes four levels [115]: (1) detecting the presence of damage; (2) locating dam-

age; (3) assessing damage severity; (4) predicting the structural remaining service

life. Vibration-based damage identification techniques have been extensively studied

in the literatures [41]. In the earlier years, much attention was focused on those

methods based on the change of structural modal parameters as damage signature;

however, it has been pointed out that modal information alone is not sensitive to lo-
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cal damage and that its capability as direct damage indicators is easily influenced by

noise. Nevertheless, researches do converge to support the conclusion that structural

damage information is hidden in modal features, which need to be further processed

for successful damage identification. Also, signal processing damage detection tech-

niques are mostly limited up to the level 2.

With a structural model (e.g., a finite element model) available as reference in-

formation, it is possible to develop damage identification methods that can address

even the problem of level 3 [41], that is, the quantification of damage severity. Some

researchers used the model updating method [50] to address this problem, by com-

paring the undamaged (reference) and candidate (test) model (physical or modal)

matrices [41]. These methods are essentially parametric model based; as such, they

are prone to model error.

More recently, the damage identification problem including that of level 3 has

been treated as a pattern recognition issue [16][21]. The classification-based methods

involve three steps: feature extraction, training, and classification. For damage iden-

tification, the extracted features from various predefined or reference damage classes,

including different damage locations and damage extents, are used as inputs to train

the classifiers, which can then identify the damage class of the test feature representing

the current state of the structure. Successful examples include those based on artificial

neural networks (ANN) [154][124], support vector machines (SVMs) [137][135][136],

nearest neighbor [134], and Markov observers [40]. However, their effectiveness suffers

from the training process for the parameteric classifier model (as reviewed in Section

1.2.2 of Chapter 1), which could be computationally intensive and needs the skill of

an experienced practitioner.

This chapter proposes a new algorithm in the classification framework for both
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locating and assessing structural damage, using the recent theory from blind source

separation (BSS) [34] and sparse representation (SR) [20] along with compressed

sensing (CS) [26][43]. The proposed damage identification method consists of two

steps: feature extraction and classification.

Specifically, in the feature extraction step, the BSS method complexity pursuit

(CP) [129] is used to extract the modal features of the structure. As introduced in

Chapter 2, CP has been found to be a useful alternative to efficiently perform output-

only system identification of many structures with highly-damped, closely-spaced, and

non-proportionally damped modes requiring limited parameter adjustments. In the

first step of the proposed method, CP serves to blindly extract the structural modal

features, which are subsequently used by the classification framework for damage

identification.

In the following classification step for both locating damage and identifying dam-

age extent, the sparsity nature of the classification itself is exploited. An SR frame-

work is developed based on the theory of SR and CS [20][26][43], inspired by their

recent success on sparse MRI [84], robust SR face recognition [138], and more lately

on SHM [9][148][91][109]. The key idea is that the damage class of the test structure

naturally belongs to only one unique class of the predefined reference feature space:

(1) an over-complete reference feature dictionary is built by concatenating all the

modal features of all candidate damage classes; (2) the test modal feature is most

sparsely represented as a linear combination of the bases of this reference dictionary,

activating only the relevant feature in the same damage class. This establishes a

highly underdetermined linear system of equations with an underlying sparse repre-

sentation that directly dictates the damage class of the test structure. The theory

of SR and CS enables one to find the correct sparse solution of such a highly under-
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determined linear system of equations using the efficient ℓ1-minimization technique,

leading to the test structure’s class of damage location and damage severity.

Numerical simulations and experimental study are conducted to validate the pro-

posed CP-SR method. Results show that it can accurately and efficiently identify the

damage locations and damage extents. In addition, several problems of identifying

multiple damage, using limited sensors and partial features, and in the presence of

heavy noise and random excitation are also presented.

5.2 Blind extraction of modal features

The first step of the proposed method is to blindly extract the structural modal

features that carry the damage information. A BSS technique CP that has been

presented in Chapter 2 and [147] is used to accomplish this task. The modal fea-

tures Φ ∈ R
n×n containing the state of the structure are subsequently used by the

classification framework for damage identification, as detailed in the ensuing section.

5.3 Sparse representation classification for damage identifi-

cation

With extracting modal features by CP being the first step, the second step of the

proposed method is classification. In this section, a classification framework based on

sparse representation for damage identification is developed by exploiting the sparsity

nature implied in the classification problem itself.
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5.3.1 Classification for damage identification

Given a test feature, the objective of classification is to identify which class it pertains

to, within a predefined reference feature space containing a large set of candidate

classes. For the damage identification issue, this is equivalent to determining which

damage pattern the feature of the test structure belongs to, from a predefined feature

class space with various damage classes (i.e., cases with different damage locations

or damage severity). This predefined reference feature space comprises those features

of various labelled damage classes (e.g., simulated by a structural FEM model). In

the proposed method, the test feature and the reference feature space are obtained

by the CP method in the first step, blindly extracting the modal features from the

structural responses of the test structure and the reference FEM model, respectively.

5.3.2 Classification with SR

Suppose there are N distinct predefined candidate damage classes of an n-DOF

structure (simulated by its FEM model), then for the jth class (j = 1, ..., N), its

structural mode matrix Φj ∈ R
n×n consists of n modal feature columns Φj =

[ϕj,1, ...,ϕj,i, ...,ϕj,n] (i = 1, ..., n), where ϕj,i ∈ R
n is its ith column. For N ref-

erence damage classes (simulated from the structural FEM model), the predefined

reference feature space is the reference modal feature matrix (dictionary) Ψ ∈ R
n×w

consists of w = n×N concatenated modal feature columns,

Ψ = [Φ1, ...,Φj , ...,ΦN ] = [ϕ1,1, ...,ϕj,i, ...,ϕN,n] (5.1)

The key idea of sparse representation classification is that the damage class of the

test structure (represented by the test modal feature columns) can only belong to

one of the predefined reference damage classes (represented by the reference modal
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feature matrix or dictionary); as such, it can be formulated as a sparse representation

classification problem.

Specifically, the test structure with a (test) modal feature matrix Φ̂ = [ϕ̂1, ..., ϕ̂n] ∈

R
n×n (representing its current state) coincides with one of the N predefined candidate

damage classes, say, the jth class; then any column of Φ̂, say, the ith column ϕ̂i ∈ R
n

(i = 1, ..., n ), if not normalized, will approximately have only a scale difference αj,i

from ϕj,i ∈ R
n, which is the ith column of Φj representing the predefined jth damage

class, i.e.,

ϕ̂i = αj,iϕj,i (5.2)

Then expressing ϕ̂i ∈ R
n in terms of the whole reference feature space Ψ ∈

R
n×w, it can be sparsely represented as a linear combination of the bases (the feature

columns) of Ψ ∈ R
n×w,

ϕ̂i = Ψαi =
N
∑

k=1

n
∑

l=1

αk,lϕk,l (5.3)

where αi = [0, ..., 0, αj,i, 0, ..., 0]
T ∈ R

w is an underlying sparse vector, in which the

location of the non-zero entry αj,i naturally assigns the damage class the given test

feature ϕ̂i falls into within the N predefined reference damage classes (also see Fig. 5.1

for illustrations).

The formulated classification problem for damage identification with a sparse rep-

resentation therefore centers around the issue of recovering the underlying sparse

αi ∈ R
w from the knowledge of the predefined reference matrix Ψ ∈ R

n×w and the

test feature ϕ̂i ∈ R
n.

5.3.3 Sparse solution via ℓ1-minimization

The reference feature matrix Ψ ∈ R
n×w typically consists of a large amount of modal

feature columns that correspond to vast candidate damage classes that the structure
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Test Feature Reference Dictionary
      Sparse
Representation

Figure 5.1 : Sparse representation classification paradigm for damage identification.
The feature column (red) from the test structure only activates itself in the predefined
reference feature dictionary, yielding a sparse representation with only one non-zero
entry (red).

may possibly incur; consequently, n≪ w and Ψ ∈ R
n×w is an over-complete reference

modal feature dictionary such that the sparse representation classification problem

Eq. (5.3) is an (highly) underdetermined linear system of equations, which is ill-posed:

there exist infinite feasible solutions.

Implied in the nature of the sparse representation classification problem, the spars-

est solution to Eq. (5.3), α⋆
i ∈ R

w (i = 1, ..., n) with only one non-zero entry αj,i, is

needed to determine the identity of the test feature, and can be exactly found by the

well-known sparsity optimization ℓ0-minimization program (P0) [20],

(P0) : α
⋆
i = arg min‖αi‖ℓ0 subject to Ψαi = ϕ̂i (5.4)

where ‖αi‖ℓ0 = #{r : αi,r 6= 0} is the ℓ0-norm, simply counting the number of non-

zero entries of αi. (P0) finds a vector α
⋆
i with smallest ℓ0-norm that explains the

observation ϕ̂i. This ℓ0-norm is a very intuitive measure of sparsity, naturally (P0)

seeking the sparsest α⋆
i with fewest non-zero entries that is the correct solution to the
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SR classification framework (in Eq. (5.3)), rejecting all other feasible, but less sparse,

solutions.

It has been proven, however, that solving (P0) is in general NP-hard [20]. For-

tunately, the theory of SR and CS [20][26][43] establishes that if the solution αi is

sufficiently sparse, then (P0) can safely be replaced by a convex optimization program

ℓ1-minimization (P1) , known as basis pursuit [31],

(P1) : α
⋆
i = arg min‖αi‖ℓ1 subject to Ψαi = ϕ̂i (5.5)

or a stable version to account for possible noise or errors

(P δ
1 ) : α

⋆
i = arg min‖αi‖ℓ1 subject to ‖Ψαi − ϕ̂i‖ℓ2 ≤ δ (5.6)

in which the ℓ1-norm is defined by ‖αi‖ℓ1 =
∑w

r=1 |αi,r| and the ℓ2-norm is defined

by ‖αi‖ℓ2 =
√

∑w
r=1 |αi,r|2 ; δ is associated with the noise level. (P1) and (P δ

1 ) can

be solved very efficiently via linear programming and convex quadratic programming

techniques [24][76], respectively.

Since the underlyingαi ∈ R
w is very sparse with only one (or few) non-zero entries,

it is guaranteed to be correctly recovered by (P1) (or (P δ
1 ) ) from the knowledge of

the test feature ϕ̂i ∈ R
n and the predefined reference matrix Ψ ∈ R

n×w.

5.3.4 Robust damage identification index based on SR classification

Theoretically, only one column (say, the ith column ϕ̂i ∈ R
n ) of the test structure’s

modal feature matrix Φ̂ ∈ R
n×n is needed to set up the underdetermined sparse

representation classification problem in Eq. (5.3), ϕ̂i = Ψαi; whose, sparse solution

sought by ℓ1-minimization α
⋆
i ∈ R

w has only one non-zero entry, say, αj,i, indicating

the test structure belongs to the jth predefined damage class. Nevertheless, in prac-

tice, noise and other factors can affect α
⋆
i (i = 1, ..., n), wherein other entries may
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only be approximately zero. Also, because damage information may be distributed

among all test modal feature columns, it would be more robust to combine more

sparse solutions using different test modal feature columns.

With n modal feature columns accompanying each test n-DOF structure and con-

structing n underdetermined linear systems of equations, there are n recovered sparse

solutions α⋆
i ’s (i = 1, ..., n). Alternatively a simpler and robust damage identification

index can be used,

ǫj =
n

∑

i=1

‖ϕ̂i −Φj(α
⋆
i )j‖ℓ2 (5.7)

where (α⋆
i )j ∈ R

n (j = 1, ..., N) is the jth segment of α⋆
i ∈ R

w, only consisting of n

entries associated with the predesigned jth class; ǫj is the recovery error associated

with the jth class, summating over the whole n test modal features. This index eval-

uates how well the partial solution (α⋆
i )j associated with the jth class reconstructs

the test feature ϕ̂i ∈ R
n (i = 1, ..., n); obviously the smallest ǫ among j = 1, ..., N

determines which predefined class the test features belong to (i.e., if the test features

indeed belongs to, say, the jth class, then its associated recovery error ǫj would natu-

rally be smallest), such that the damage class of the test structure can be accordingly

assigned.

5.3.5 Robustness of the SR classification

In practice, the test feature column may not exactly correspond to any one of the

predefined reference feature columns; this may be due to model errors or simply

because the reference dictionary contains no such damage class with a particular

feature column. However, within this reference feature dictionary, ℓ1-minimization

can still recover the sparsest solution to the classification problem, picking the most

relevant damage class and rejecting all other possible but less relevant damage classes.
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In case the damage class of the test structure reside outside the N individual

predefined candidate damage classes, yet correspond to some combination of these

individual candidate classes, αi will also be a sparse vector with few non-zero entries,

each of which also locates the identity of the individual damage class in the combi-

nation within the reference feature dictionary. In the proposed damage identification

framework, this situation arises in identifying multiple damage.

5.3.6 Limited modal feature columns and limited sensors

For the n-DOF structure (with n modes), in practice, many modes may not be excited

and thus may be absent in the structural responses; as a result, CP may not extract

these mode feature columns. However, as mentioned in Section 5.3.4, not all modal

feature columns are needed for the sparse representation classification method; if only

p (it can be p≪ n ) mode feature columns are available, then in Eq. (5.7), ǫ will only

summate over the p modes.

Another common situation is that only limited m sensors are available. If m < n

or m is less than the active mode number, the modal identification problem in

Eq. (2.13) becomes underdetermined; where, CP will “blindly” extract m mode

feature columns ϕ̂i ∈ R
m (i = 1, ...,m) that do not correspond to the theoretical

structural modeshapes–CP still functions as a dimensionality reduction tool. In this

situation, the sparse classification framework still holds provided that the reference

matrix is also set up along the same lines (applying CP on m sensors’ structural

responses from the FEM model), i.e., Ψ ∈ R
m×w, w = m × N , since ϕ̂i ∈ R

m will

still correspond to one of the Ψ ∈ R
m×w’s columns. However, if m is too small then

the spatial resolution would be very poor for locating damage; for example, one may

not expect to identify the damage location of a large-scale structure using only one
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or two sensors.

5.4 Damage identification algorithm procedure

The proposed damage identification based on SR in the classification framework con-

sists of two stages: locate damage (Stage 1) and assess damage severity (Stage 2).

Each stage undergoes the two-step CP-SR procedure: modal feature extraction by

CP (Step 1) and SR classification (Step 2); Fig. 5.2 shows the flowchart of the CP-SR

procedure, and the whole task is implemented as follows:

Stage 1. Identification of damage location

(1a) Predefine damage classes of the reference structural FEM model with all

possible damage locations (e.g., a damage class is defined as the structure damaged

at one location with 50% stiffness reduction). For each damage class, simulate the

structural responses from the corresponding FEM model, and then use CP to extract

the modal feature columns of this damage class. Concatenate all the modal feature

columns of all candidate damage classes for the reference feature matrix or dictionary.

(1b) From the structural responses of the test structure, use CP to extract the

test modal feature columns.

(2) For each test modal feature column, use ℓ1-minimization to solve (P1) and

obtain the sparse solution. Calculate the recovery error of each damage class using

Eq. (5.7). The damage class with the smallest recovery error is the one that the test

structure belongs to.

Stage 2. Identification of damage extent Repeat Stage 1, except that the prede-

fined damage classes only consider the reference structural FEM model damaged at

the identified location with all possible damage extents.
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Current (Test) Structure

Measure structural responses

From        , CP extracts feature columns

Structural FEM

Predefine     damage classes

Simulate structural responses

From          , CP extracts feature columns

Concatenate for reference feature matrix-minimization solves 

Calculate 

for 

If     is smallest, then test structure suffers

 the   th predefined damage class.

obtain solutions

Step 2: Classification

Step 1: Blind feature extraction

1(b)

1(a)

Figure 5.2 : The flowchart of the CP-SR damage identification algorithm. Both
Stage 1 locating damage and Stage 2 assessing damage extent undergo this procedure,
except the predefined damage classes are different. (w = n × N , and j = 1, ..., N
means simulating structural responses for class 1, and then repeat it for class 2, and
so on; similarly for i = 1, ...n.)

5.5 Numerical simulations

This section presents two numerical structure examples to investigate the ability of

the developed CP-SR damage identification method; one is a discrete mass-spring

damped model, and the other is a distributed-parameter fixed beam model.
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5.5.1 Damage identification of a discrete system

The proposed CP-SR damage identification method is first validated by numerical

simulations on an n = 12-DOF linear time-invariant spring-mass damped model

(Fig. 2.9). The parameters are set as follows: the masses are m1 = 2,m2 = m3 = ... =

m11 = 1,m12 = 3, the spring stiffness are k1 = k2 = ... = k13 = 1, and proportional

damping is added as C = 0.03M. The first four natural frequencies of the structure

are 0.0378, 0.0716, 0.0990, 0.1250 Hz, respectively. Damage is modeled by stiffness

reduction of the spring. Impact or Gaussian white noise excitation is induced at the

6th DOF (mass) and the 200-second structural responses are obtained by Newmark-

Beta algorithm with a sampling frequency of 10 Hz. CP extracts structural modal

features in the feature extraction step.

5.5.1.1 Noise-free damage identification

Damage localization The first stage is identifying damage location. Since there

are 13 candidate damage locations in the structural model, N = 13 distinct pre-

designed damage classes are simulated, respectively, each has 50% stiffness reduction

at single location (e.g., class 1 is defined as 50% stiffness reduction at the Spring 1).

The detailed predefined reference damage classes are listed in Table 5.1. For each

of the N = 13 predefined damage classes, p = n = 12 modal feature columns are

extracted by the CP algorithm from the structural responses measured at the m = 12

sensors of the structural FEM model. Concatenating all the modal feature columns

of the 13 damage classes, the reference feature matrix Ψ1 ∈ R
n×w (the subscript here

means for Stage 1 of locating damage) is set up with n = 12 and w = 12× 13 = 156

columns and is thus of size 12× 156 (Table 5.1); accordingly, for example, the 1st to

12th columns in Ψ1 is Φ1 ∈ R
12×12 that belongs to damage class 1, and so on. Note
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that Ψ1 only needs to be computed once.

Table 5.2 lists the test structure cases with different damage location of different

damage extents. For each test case, p = n = 12 test modal feature columns (e.g.,

the ith column is ϕ̂i ∈ R
12) are also extracted by CP from the structural responses;

combining with Ψ1 ∈ R
12×156, 12 underdetermined linear systems of equations ϕ̂i =

Ψ1αi (i = 1, ..., 12) are established, each of which is then solved by ℓ1-minimization

to obtain α
⋆
i ∈ R

156 (i = 1, ..., 12), and the damage index is calculated using Eq. (5.7).

Test Case 1-6 of single damage are considered in this subsection. Fig. 5.3 presents

one specific example of the sparse solution to the SR classification framework: the test

modal feature is the 12th column ϕ̂12 ∈ R
12 of test structure of Test Case 2 (Table

5.2), and the recovered sparse solution α
⋆
12 ∈ R

156 to the underdetermined problem

ϕ̂12 = Ψ1α12 has a significant non-zero entry exactly at the 72nd location; as the 61st

to 72nd columns of the reference feature dictionaryΨ1 ∈ R
12×156 isΦ6 ∈ R

12×12 which

belongs to the predefined damage class 6, then this non-zero α⋆
6,12 directly indicates

the test structure to be damage class 6 (damaged at the 6th spring, see Table 5.1),

which exactly agrees with Test Case 2.

As mentioned, it may be more robust to use the recovery error damage index

(Eq. (5.7)) involving more test modal features; take the Test Case 2 for example, there

are p = n = 12 test modal feature columns available, use each of them to obtain 12

sparse solutions along with Eq. (5.7) to calculate the recovery error associated with

each predefined damage class. Clearly in Fig. 5.4(a) and Fig. 5.5(a) for Test Case

1-6, damage is accurately located.

It is worth noting that the relaxation of the SR classification framework discussed

in Section 5.3.5 is indicated here. Take Test Case 1 (90% damage at the 6th spring)

for example, the reference feature dictionary matrix Ψ1 contains no exactly such a
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Table 5.1 : Predefined damage classes of the 12-DOF structure for Stage 1.

Class 1 2 · · · 12 13

Damage

location
Spring 1 Spring 2 · · · Spring 12 Spring 13

Damage

severity
50% 50% · · · 50% 50%

Obtained

features
Φ1 ∈ R

12×12 Φ2 ∈ R
12×12 · · · Φ12 ∈ R

12×12 Φ13 ∈ R
12×12

Reference

matrix
Ψ1 = [Φ1, ...,Φj , ...,Φ13] ∈ R

12×156

Table 5.2 : Test cases of the 12-DOF structure.

Single damage Multiple damage

Test case 1 2 3 4 5 6 7 8

Damage

location
Spring 6 6 6 Spring 3 3 3

Spring

3&6

Spring

4&7

Damage

severity
90% 50% 20% 90% 50% 20%

50%&

50%

20%&

50%

Extracted

features
Each Test Case: Φ̂ = [ϕ̂1, ..., ϕ̂i, ..., ϕ̂12] ∈ R

12×12

damage class (Table 5.1); however, SR automatically picks the most relevant class in

the dictionary (50% damage at the 6th spring), rejecting all other possible but less

irrelevant classes (damage at other springs). This is sufficient for locating damage

while keeping the reference feature dictionary not too large by avoiding vast damage
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Table 5.3 : Predefined damage classes of the 12-DOF structure for Stage 2 of Test
Case 1-3.

Class 1 2 3 4 5

Damage

location
Spring 6 Spring 6 Spring 6 Spring 6 Spring 6

Damage

severity
10% 20% 50% 70% 90%

Obtained

features
Φ1 ∈ R

12×12 Φ2 ∈ R
12×12 Φ3 ∈ R

12×12 Φ4 ∈ R
12×12 Φ5 ∈ R

12×12

Reference

matrix
Ψ2 = [Φ1, ...,Φj , ...,Φ5] ∈ R

12×60

classes with a combination of different damage locations and extent; such a strategy

is further beneficial to a computationally efficient identification. As expected, the

recovery error (damage index) at the damage location for Test Case 2 is smallest

among Test Case 1-3 (similarly Test Case 5 is smallest among Test Case 4-6), since

it has exact corresponding damage class in the reference feature dictionary (Class 6

in Table 5.1).

Identification of damage severity After damage is located, its severity can be

conveniently identified as Stage 2 with similar scheme. Take Test Case 1-3 for ex-

ample, since damage has been already identified at the 6th spring in Stage 1, the

predefined damage classes can only consider different damage extents all at this lo-

cation, as listed in Table 5.3. Here, N = 5 candidate damage extents are considered,

that is 10%, 20%, 50%, 70%, 90% (arbitrarily finer levels can also be predesigned),
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Figure 5.3 : The sparse solution α
⋆
12 ∈ R

156 to Eq. (5.3) sought by ℓ1-minimization.
The test feature column ϕ̂12 ∈ R

12 is the 12th column (hence the subscript of α⋆
12

and ϕ̂12 ) from Test Case 2 extracted by CP, and the reference feature matrix is
Ψ1 ∈ R

12×156 defined in Table 2. The significant non-zero entry is at the 72nd
location, which exactly corresponds to the predefined 6th damage class whose feature
columns Φ6 ∈ R

12×12 range from the 61st -72nd locations in the reference feature
dictionary Ψ1 ∈ R

12×156 .

and the reference feature matrix Ψ2 (Stage 2) therefore comprises w = 12 × 5 = 60

modal feature columns and is of size 12× 60. Same procedures are for Test Case 4-6.

CP-SR is applied and the identification results are presented in Fig. 5.4(b) for

Test Case 1-3 and Fig. 5.5(b) for Test Case 4-6, which indicate accurate identification

of damage extent of the test structure. This example illustrates the convenience of

the two-stage identification method: by taking advantage of the identified damage

location information, the reference dictionary Ψ2 for identification of damage extent

can be dramatically small with few relevant damage classes at the identified damage

location, making the procedure more efficient.

Identification of multiple damage In case the test structure suffers damage at

multiple locations, it is supposed to set up a new reference feature dictionary compris-
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ing all the features of various candidate damage classes, each of which simulates dam-

age at multiple locations. This, unfortunately, will result in an exponential increase

of the reference feature matrix size, since there are numerous possible combinations

of the damage locations.

In the SR classification method, the multiple-damage class can be approximately

treated as a linear combination of the corresponding single-damage classes. Such a

strategy, as mentioned in Section 5.3.5, induces the sparse solution to yield multiple

non-zero entries, each identifies the individual damage class (location). Following

this analysis, with the same reference matrix Ψ1 consisting of only predefined classes

each with single damage location, the proposed method is able to identify multiple

damage.

Test Case 7-8 of multiple damage (Table 5.2) are considered. For Stage 1 of locat-

ing damage, the above same reference matrix Ψ1 ∈ R
12×156 is used. After conducting

CP-SR, the calculated recovery errors are presented in Fig. 5.6(a), indicating success-

ful locating multiple damage. Take Test Case 7 (damage at 3rd and 6th springs) for

example, there are two significantly smaller recovery errors as a combination of two

individual damage locations: one is at the 3rd (pointing to the 3rd class) and the

other at the 6th (pointing to the 6th class).

With the identified information of damage locations, a new reference matrix Ψ2

is accordingly set up for identifying the damage extent. Here, three predefined ex-

tents (20%, 50%, and 90%) are used, though finer levels can always be predesigned.

Again take Test Case 7 for example, the predefined classes only consist of different

damage extents at the identified damage locations at 3rd and 6th spring; this results

in 32 = 9 distinct combinations and thus N = 9 reference damage classes to simulate.

Therefore, Ψ2 has w = 12 × 9 = 108 modal feature columns and is of size 12 × 108.
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As can be seen in Fig. 5.6(b), the damage extents at the couple of damage locations

are also successfully identified, matching the test structure cases.

Random vibration The effectiveness of the proposed method in random vibration

is also studied. Test Case 1-3 are considered, where the test structure is subject to

zero-mean Gaussian white noise excitation at the 6th DOF, and CP are used to extract

the test modal feature columns from the random responses of the test structure. As

mentioned, the reference feature matrix Ψ1 remains unchanged, and Ψ2 is identical to

that in Section 5.5.1.1. The CP-SR identification procedures are conducted. Fig. 5.7

shows that the proposed method shows no degradation in random vibration. This is

because the CP algorithm is robust even in random vibration to extract those modal

features (modeshapes); see Chapter 2.

(a) (b)

Figure 5.4 : Identification results by CP-SR of (a) damage location and (b) damage
extent of Test Case 1-3 with single damage.
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(a) (b)

Figure 5.5 : Identification results by CP-SR of (a) damage location and (b) damage
extent of Test Case 4-6 with single damage.

(a) (b)

Figure 5.6 : Identification results by CP-SR of (a) damage location and (b) damage
extent of Test Case 7-8 with multiple damage.

5.5.1.2 Damage identification with limited features in noisy environment

To be effective for practical applications, the robustness of the proposed CP-SR

method against noise must be investigated. This sub-section studies its performance

in noisy environment, taking the Test Case 2 for instance. Zero-mean Gaussian white
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(a) (b)

Figure 5.7 : Identification results by CP-SR of (a) damage location and (b) damage
extent of Test Case 1-3 with single damage in random vibration.

noise is added to the structural responses measured from the test structure with

various signal-to-noise-ratio (SNR) levels, respectively.

The reference feature dictionary for the two stages has already been set up above.

Same procedures of CP-SR are performed and the identification results are presented

in Fig. 5.8. It is seen that the method accurately locates damage at SNR as low as

15 dB (17.8% RMS noise level), while identification of the damage severity fails at

this noise level. This is because with significant noise, the modal feature columns

extracted by CP from noisy structural responses can no longer reflect the structural

damage features; see for example the lower mode feature columns (Fig. 5.9(a) and

the high mode feature (Fig. 5.9(b)), which have been affected by heavy noise.

However, such a problem may be solved by using limited modal feature columns

in the CP-SR procedure. As the structural responses are typically dominated by

lower-mode components which contain most of the damage information, it is natural

to drop those higher-mode components that have been largely contaminated by noise-
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these are termed “noise features”. This can be implemented automatically since the

modal feature columns extracted by the CP algorithm are approximately in frequency

sequence; see Chapter 2 and Ref. [147] for more details.

Therefore in the following heavily noisy environment, only the p = 3 lower-mode

feature columns of the test structure are used and the CP-SR procedures are imple-

mented. The results shown in Fig. 5.10 support such a strategy in noisy environment.

There, when the noise is as heavy as comparable to the structural response (SNR=0

dB or 100% RMS noise), CP-SR can still locate damage and assess the damage level.

However, as mentioned in Section 5.3.4, it is usually more robust to include more

modal feature columns of the test structure when noise is not heavy; Fig. 5.11 shows

the identification results using only p = 3 lower-mode feature columns of the test

structure in Test Case 1-3 without noise. Clearly Test Case 3 (20% damage) is not

accurately identified; contrarily, when using p = n = 12 test modal feature columns,

this small damage can be accurately identified, as already shown in Fig. 5.4.

This occurs primarily because small damage may cause little variation of test

modal features Φ̂ ∈ R
12×12 that is distributed among all its 12 columns. As such, it

is necessary to use all its modal feature columns for the method to identify this little

variation (damage)–this is exactly the original strategy of the method: the damage

index (recovery error) (Eq. (5.7)) is summated over all modal feature columns-instead

of dropping many columns which may cause loss of variation information. Therefore,

in heavily noisy environment, this method with partial features (p < n) is incapable

of identifying small damage.
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5.5.1.3 Damage identification with limited sensors

This subsection studies the performance of CP-SR when sensors are inadequate com-

pared to the active modes or the DOFs of the structure, i.e., m < n . In this situation

as mentioned in Section 3.6, the system identification problem Eq. (2.13) becomes un-

derdetermined, where CP extracts p = m < n “blind” feature columns that do not

exactly correspond to the modeshapes; most of all, the modal feature columns are

degenerate for limited spatial resolution.

For illustrations, Test Case 1-3 are used for example with the same above settings,

but using only m = 6 sensors. Then CP extracts six modal feature columns for

the test structure as well as for each damage class of the structural FEM model,

respectively; i.e., ϕ̂i ∈ R
6 , w = 6 × 13 = 78 for Stage 1 (w = 6 × 5 = 30 for

Stage 2), and the reference feature matrix Ψ1 ∈ R
6×78 in Stage 1 (Ψ2 ∈ R

6×30 for

Stage 2). Fig. 5.12 shows that the CP-SR successfully identified the damage pattern

of Test Case 1-2 while failed on the small damage case. This indicates that CP-SR

holds as long as the “blind” features reflect the structural variation due to damage

as discussed in Section 5.3.6, and its failure on small damage case is mostly because

the degenerate feature columns with inherently poor spatial resolution do not contain

sufficient structural variation due to small damage.

5.5.2 Damage identification of a distributed-parameter beam

This section considers applying CP-SR on a two-dimensional distributed-parameter

fixed beam model (Fig. 2.12) shown in Chapter 2. In the feature extraction step, CP

extracts p = m = 6 modal feature columns from the structural responses. Damage

is simulated by reducing the moment of inertia of the cross section. The predefined

damage classes are introduced along the same line with those in Section 5.5.1.1: for
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(a) (b)

Figure 5.8 : Identification results by CP-SR of (a) damage location and (b) damage
extent of Test Case 2 with single damage under different noise levels.

Stage 1, class 1 with 50% damage at element 1, class 2 with 50% damage at element

2, and so on, resulting in N = 7 damage classes predefined for Stage 1. For each class,

CP extracts six modal feature columns from the structural responses, i.e., p = 6 ,

w = 6× 7 = 42, and Ψ1 ∈ R
6×42 for Stage 1.

Three Test Case 1-3 are considered similar with those in Section 5.5.1.1: 90%,

50%, 20% damage at Element 4, respectively. Fig. 5.13(a) presents the identification

results of the damage location; clearly CP-SR is accurate for all the test cases. After

damage location is identified at the 4th element, Stage 2 for identifying damage

extents is conducted. Also N = 5 damage extents are considered, that is 10%, 20%,

50%, 70%, and 90%, thus w = 6× 5 = 30 and the reference feature matrix for Stage

2 is set up Ψ2 ∈ R
6×30. As seen in Fig. 5.13(b), CP-SR is also able to identify the

damage extents in each test case. This example shows that CP-SR is also applicable

on continuous structures. In addition, the method performs well using limited modal

feature columns (p < n).
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(a)

(b)

Figure 5.9 : The modeshapes (modal feature columns) from Test Case 2 extracted by
CP under noise level of SNR=15dB, compared to those exact modeshapes and those
extracted by CP without noise: (a) the 1st-3rd modes and (b) the 12th mode.

5.6 Experimental study

The proposed CP-SR damage identification method is applied on an experimental

building structure (Fig. 4.8(a)) (also described in Chapter 4). It is a three-story

structure with dominant mass on each floor. Originally four accelerometers are at-

tached to record the structural responses while it was subject to band-limited white
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(a) (b)

Figure 5.10 : Identification results by CP-SR using only three lower-mode feature
columns of (a) damage location and (b) damage extent of Test Case 2 with single
damage under different noise levels.

(a) (b)

Figure 5.11 : Identification results by CP-SR using only three lower-mode feature
columns of (a) damage location and (b) damage extent of Test Case 1-3 with single
damage without noise.

noise excitation at the base: three were on the right side of each floor and one on the

left side of the 1st floor. The sampling frequency was set at 200 Hz. During the test,

the left column between the base and the 1st floor suddenly fractured due to damage
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(a) (b)

Figure 5.12 : Identification results by CP-SR using only six sensors of (a) damage
location and (b) damage extent of Test Case 1-3 with single damage.

(a) (b)

Figure 5.13 : Identification results by CP-SR of the distributed-parameter beam of
(a) damage location and (b) damage extent.

at the weld right below the front beam of the 1st floor. However, an FEM model of

the healthy structure has already been set up before the test.

A segment of 20-second recorded structural responses (damage occurred at the

10th second) from m = 3 accelerometers on the right side and their (normalized)
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power spectra density (PSD) before (0-10 second) and after damage (10-20 second)

are presented in Fig. 5.14. CP and SOBI are applied to extract three mode feature

columns from the structural responses before and after damage, respectively. These

“blind” feature columns contain the structural damage information and can be used

for the following step of the proposed method.

In building the reference feature matrix using the FEMmodel, damage is simulated

by reducing the lateral stiffness of each floor. For Stage 1 of locating damage, N = 3

candidate damage locations are thus considered: class 1 with 50% lateral stiffness

reduction of the columns between the base and the 1st floor, and so on for class 2

and 3. Therefore, w = 3× 3 = 9 and Ψ1 ∈ R
3×9. The test feature columns ϕ̂i ∈ R

3

(i = 1, 2, 3, shown in Fig. 5.15(b)) extracted by CP from the real-recorded post-

damage (10-20 second) are used. The identification results using p = 3 (including

the “blind” features) or p = 1 (only the 1st mode) feature columns are shown in

Fig. 5.16(a), which indicates that damage is accurately located by CP-SR on the first

floor (the column between the base and the 1st floor).

After damage is located, the reference feature matrix in Stage 2 is set up, simu-

lating N = 5 damage classes with different damage extents at the identified damage

location (i.e., class 1 to 5 are defined by lateral stiffness reduction 10%, 30%, 50%,

70%, and 90%, respectively, all between the base and the 1st floor). w = 3× 5 = 15

and Ψ2 ∈ R
3×15. As seen in Fig. 5.16(b), with both p = 3 and limited p = 1 feature

columns, the CP-SR method identifies the structure to belong to the most serious

damage class (the 5th damage class), which quite matches the actual situation-the

damaged column was seriously fractured.
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Figure 5.14 : The recorded accelerations (damage at the 10th second) and their
normalized power spectra density (PSD) before and after damage.

5.7 Summary

Exploiting the sparsity nature implied in the classification problem itself, this chap-

ter develops a new two-step damage identification method via a combination of blind

feature extraction and sparse representation classification framework–an data-driven

non-parametric formulation–for identification of both structural damage location and

severity, without an parametric classifier model or the computationally-intensive

training process. In the feature extraction step, the modal features are blindly ex-

tracted by the unsupervised CP system identification algorithm. Then in the classifi-

cation step, the sparsity nature implied in the classification problem itself is exploited:
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(a) (b)

Figure 5.15 : The modeshapes (modal feature columns) extracted by CP compared
with those by SOBI and eigenvectors of FEM: (a) before damage and (b) after damage.

expressing the modal feature column of the test structure as a linear combination of

the bases of the over-complete reference feature dictionary builds an underdetermined

linear system of equations, whose underlying sparse representation is correctly recov-

ered by ℓ1-minimization, directly assigning the most relevant damage class of the test

feature (and rejecting all other possible but less relevant damage classes) so as to

realize damage identification.

The capability of CP-SR is first validated by numerical simulations. Results illus-

trate that CP-SR is suitable for identification of small and severe single or multiple

damage. Attribute to the capability of the CP algorithm, the method is also ro-
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(a) (b)

Figure 5.16 : Identification results by CP-SR using three mode feature columns and
using only the 1st modeshape (modal feature column) of the experimental structure
of (a) damage location and (b) damage extent. (The recovery errors are normalized.)

bust to random excitation. Its effectiveness in noisy environment is also studied.

It is found that using only few lower-mode features enhances the robustness of the

method against heavy noise, which, in turn, is compromised in identification of very

small damage. It is also found that CP-SR is incapable of identifying small damage

with very limited sensors or poor spatial resolution. CP-SR is successfully applied on

an experimental building structure in both identifying damage location and estimat-

ing damage extent. The method is shown to have straightforward implementation

and efficient computation as well as robustness in identification of structural damage.
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Chapter 6

Dynamic Imaging

This chapter complements the previous Chapter 4 and Chapter 5 for the objective of

a multi-scale structural damage detection in a data-driven framework by developing

a new local structural assessment method: dynamic imaging (close-up “filming”) of

structures. The data structure of the multiple images is exploited, which are de-

composed into a superposition of a low-rank background component and a sparse

innovation (dynamic) component. The low-rank component represents the irrelevant

temporally correlated background of the multiple frames, whereas the sparse innova-

tion component indicates the damage-induced information. It is a data-driven and

unsupervised (blind) approach that requires no parametric model or prior structural

information for calibration, with the potential to benefit real-time automated local

damage surveillance and diagnosis of structures where experts’ visual inspection is

not needed or not possible.

6.1 Introduction

Global SHM with a network of sensors on structures aims to immediately provide

global signs of damage information such as damage instants, damage location, and

damage severity, which depends on the resolution and dimension of the sensor net-

work and is most effective in real-time implementation. Local structural assessment,

on the other hand, conducts a close-up inspection of structural health status and
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may more accurately quantify structural damage (e.g., types and severity). Current

practice of local structural assessment includes on-site visual inspection of experts

and nondestructive testing (e.g., acoustic and ultrasonic) [120]. Although effective in

many applications, they can be time-consuming and costly, and limited to areas that

are assessable to experts, making them mostly suitable for offline practice.

Recently, digital video cameras have emerged as an alternative tool to facilitate

local structural assessment, with the advantages of being low-cost, non-contact, and

easy installation, without the need of suspending structural operation during the in-

spections. Automated video surveillance has been successful in security application

[33], traffic and vehicle tracking [60], and license plate recognition [5]. If perma-

nently mounted on appropriate positions, the video cameras are able to continuously

perform high-rate close imaging (“filming”) of critical structural components such as

bridge joints and anchored stay cables, providing local structural information for real-

time local SHM. The challenge remains efficiently extracting damage features from

the high-rate video stream; especially, an effective automated algorithm without the

interference from experts would be highly desirable for online SHM during extreme

hazards and for rapid post-disaster assessment of structures.

Quite a few research in the civil structural engineering community have been

devoted to processing the images to perform damage identification, among which

methods based on edge detection and morphological techniques have been widely

studied (see a comprehensive review [69] and many others [3][30][62][51][155][70]). The

idea is straightforward: structural damage such as cracks exhibits certain geometric

features (e.g., edge-like discontinuity) in the image, which can be segmented by the

edge detection or morphological techniques. Although validated by many examples,

their success relies on careful mathematical modeling (mostly parametric and user-
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dependent) of the geometric features of specific structural damage and the boundary

information within the images can affect their effectiveness.

This chapter aims to develop a data-driven framework to automate real-time de-

tection of structural damage by exploiting the fundamental data structure of the

high-rate multiple images (video stream). The key idea is that multiple temporal im-

ages of structures are slowly changing and highly-coherent among frames and hence

have a low-rank structure, unless damage occurs and induce sparse elements in the

corresponding temporal frames, corrupting such a low-rank structure. On this basis,

the multiple frames are decomposed into a superposition of a low-rank background

component and a sparse innovation (dynamic) component by a technique called prin-

cipal component pursuit (PCP, or robust principal component analysis) [23]. The

low-rank component represents the irrelevant temporally correlated background of

the multiple frames, whereas the sparse innovation component indicates the damage-

induced information, which can be used as an autonomous trigger for damage warning

in real time.

The proposed dynamic imaging approach for automated real-time damage de-

tection is significantly different from previous work: it is a purely data-driven and

unsupervised method that requires no parametric model of the geometric features or

prior structural information for calibration or reference. In addition, PCP has an over-

whelming probability of success under broad conditions and can be implemented by an

efficient convex optimization program without tuning parameters. Therefore, it can

be implemented blindly and automatically, which could benefit real-time automated

local damage surveillance and diagnosis of structures without experts’ involvement.

Laboratory experiments on concrete structures are conducted to validate the pro-

posed dynamic imaging method. Results demonstrate that this method can efficiently
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and effectively track the evolutionary small or severe damage by the recovered out-

standing sparse innovation component with the low-rank background subtracted from

the original images.

6.2 Principal component pursuit

The principal component pursuit (PCP) or robust principal component analysis

(PCA) has been widely studied in high-dimensional data analysis and applications

[23][111][150][113]; it is able to decompose a matrix X ∈ R
m×n into a superposition

of a low-rank matrix L ∈ R
m×n and a sparse matrix S ∈ R

m×n as

X = L+ S (6.1)

S ∈ R
m×n is said to be sparse if it has only few non-zero entries, and L ∈ R

m×n is

low-rank in the sense that its singular value decomposition (SVD)

L = UΣVT =
r

∑

i=1

σiuiv
T
i (6.2)

has few active (non-zero) singular values (r ≪ min(m,n)) where Σ ∈ R
r×r has r

diagonal elements σi as the ith singular value (σ1 > ... > σi > ... > σr), U =

[u1, ...,ur] ∈ R
m×r and V = [v1, ...,vr] ∈ R

n×r are called the left- and right- singular

vector matrices, respectively.

The L + S decomposition of X is implemented by solving the following convex

program

(P∗) : minimize ‖L‖∗ + λ‖S‖ℓ1 subject to X = L+ S (6.3)

where ‖L‖∗ :=
∑

i σi(L) is termed the nuclear norm of the matrix X, which summates

its singular values; ‖S‖ℓ1 :=
∑

ij |sij| denotes the ℓ1-norm of the matrix S, which is
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thought of as a long vector; λ = 1/
√

max(m,n) is an universal trading parameter

[23]. The nuclear norm is the convex approximation to the rank of a matrix, and the

ℓ1-norm is the tightest convex relaxation to the well-known sparsity measure ℓ0-norm

that simply counting the non-zero entries of a matrix. (P∗) can be interpreted as to

find an L⋆ with the smallest rank plus an S⋆ with sparsest representation that explain

the observation X = L⋆ + S⋆.

Candes et al. [23] rigorously proves that with overwhelmingly high probability,

(P∗) exactly recovers the true low-rank L and sparse S, provided that L is reasonably

low-rank but not sparse, and S is sparse but not low-rank. Note that (P∗) assumes

no any a priori knowledge of L’s rank nor the distribution of the singular values,

nor the magnitudes and locations of the non-zero entries of S; a completely blind

decomposition without any tuning parameter can be implemented. The detailed

proof is referred to [23].

The convex (P∗) program can be solved using an augmented Lagrange multiplier

(ALM) algorithm [81], which efficiently recovers L and S from the observation X.

Inheriting from the virtue of convex program, the solution to (P1) found by ALM is

always globally optimal.

PCP is significantly different from the traditional principal component analysis

(PCA), which is closely related to SVD: PCP explicitly considers the outliers (with

arbitrary magnitude and distribution) in X by decomposing it into a superposition

of a low-rank component L and a sparse component S; on contrary, PCA takes no

account of such outliers and a single outlier can render it fail to find the principal

components (low-rank structure).

In the proposed method, the recovered sparse matrix S is of primary interest

because it captures the innovation contained in X, which indicates the evolution-
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ary damage information and is significantly enhanced by implicitly subtracting the

low-rank matrix L representing the static or slowing changing background from the

original observation X. The interpretation of the L+ S representation in continuous

imaging of structures is described as follows.

6.3 L+ S representation of structural films

The L + S decomposition can naturally represent the multiply frames of structures

as a superposition of a background component and an innovation component: L

represents the static or slowly changing correlated background component among the

temporal frames, which hence is low-rank; S captures the innovation information in

each frame induced by the evolutionary damage, which is inherently sparse standing

out from the background.

Specifically, suppose there are N temporal frames, each of which is of resolution

M1 ×M2 where the image height has M1 pixels and the image width has M2 pixels.

Restacking each temporal frame as a long column vector∈ R
M with M = M1 ×M2,

then the multi-frame data matrix is X ∈ R
M×N , whose ith (i = 1, ..., N) column

represent the temporal frame at time Ti . PCP decomposes X ∈ R
M×N into a

superposition of a low-rank L ∈ R
M×N and a sparse S ∈ R

M×N by solving the

convex optimization program (P∗) using the ALM algorithm. Then each column of

L ∈ R
M×N and S ∈ R

M×N is restacked back to the original image dimension of

M1 ×M2.

Therefore, each temporal frame is represented by a background component plus

an innovation component; the background component represents the static or slowly

varying correlated information among different frames, whereas the sparse component

presents the dynamic innovation induced by damage. Note that the sparse dynamic
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innovation indicating the damage is dramatically enhanced by subtracting the back-

ground component from the original image, as seen in

S = X− L (6.4)

The paradigm already illustrated in Fig. 1.11 is also presented here (Fig. 6.1) for

completeness.

6.4 Experimental validation

6.4.1 Experimental setup

To validate the proposed PCP de-noising algorithm, laboratory experiments are con-

ducted separately on two concrete structural components: a simply-supported beam

component and an exterior beam-column joint (T-shape component). The concrete

beam is under four-point load, and the beam of the T-shape joint is subjected to

vertical cyclic loading and the column is constrained appropriately. The sawtooth

loads are applied with increasing amplitudes until failure.

A video camera (Nikon COOLPLIX L18) supported by a tripod is used to video-

tape a portion of the component during the experiment. The films have a resolution

of 240× 320 (height × width) pixels and a rate of 30 images per second. Originally,

the film of the beam has a length of 1 hour, 3 minutes, and 11 seconds, and that of

the T-shape structure has a length of 28 minutes and 17 seconds. Because this study

aims to conduct real-time or near real-time damage detection, sliding segments of the

multiply frames each with few-second data (e.g., 7 seconds) are used for analysis; but

only several segments are demonstrated here.

The images are truncated into a dimension of 180× 240 and a downsampled rate

of 10 images per second for the beam, and of 150 × 240 and 1 image per second
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for the T-shape structure. Each segment consists of 7-second data for the beam,

and 23-second data for the T-shape structure. Therefore, one segment data is X ∈

R
43200×22 (M = 180 × 240 = 43200 and N = 22) for the beam and X ∈ R

36000×23

(M = 150 × 240 = 36000 and N = 23) for the T-shape structure. Without any

preprocessing, they are “blindly” decomposed into a superposition of L ∈ R
43200×22

and S ∈ R
43200×22 for the beam, and L ∈ R

36000×23 and S ∈ R
36000×23 for the T-

shape structure, respectively, by PCP with the ALM algorithm. Without any post-

processing, each column of L and S is restacked back to the original image dimension;

therefore, each temporal original frame is represented as a background component

(image) plus an innovation component (image).

6.4.2 Results

Fig. 6.2(a) shows the L+S representation of an imaging of the beam at the beginning

of the loading, when a small piece of the component fell off from the middle-right

side on the top surface. While this damage information is subtle in the original

time-evolutionary frames X, it is pronounced in the S component with the sparse

white pixels on top of the falling-off temporal frames. This is because the irrelevant

background L, which is seen to change very little among frames, has been (implicitly)

suppressed.

Fig. 6.3(a) and Fig. 6.4(a) show the L+ S representation of imaging of the beam

subjected to more severe damage as the loading continues. In both cases, the crack

on the top surface developed and finally fell off, whose evolutionary development

are captured by the sparse dynamic component S, while the background L remains

slowly varying among the temporal frames. It is also observed that sparse white

pixels on top of S tend to increase with the severity of the damage: small damage
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induces few sparse elements (Fig. 6.2(a)) while large damage induces more sparse

elements (Fig. 6.3(a) and Fig. 6.4(a)); hence, the sparisty degree of S could also serve

to indicate damage extents.

Fig. 6.5(a) and Fig. 6.6(a) shows the L + S representation of imaging of the T-

shape structure also under increasing loading. Similarly, the opening process of the

crack is captured by the dynamic component S, promoting the sparse innovative crack

information among the temporally evolutionary frames (Fig. 6.5(a)). In Fig. 6.6(a),

it is seen that damage generated multiple cracks simultaneously, which also stand out

in the recovered S from the background L.

6.4.3 Discussions

The broad conditions for the success of PCP in performing the L+ S decomposition

of X are also validated. The subplots (b) and (c) in Fig. 6.3-6.6 show the singular

values of X, L, and S. Obviously, the recovered background L is indeed low-rank;

take Fig. 6.2(b) for example, only the first two singular values are active with the

rest of its singular values rapidly decaying to zero. The fast decaying of the singular

values also happens in other cases. This is because L represents the highly-correlated

background information, which is static or slowly varying among the frames, and

hence possesses a low-rank structure. Fig. 6.2(c)- 6.6(c) also show that the recovered

sparse S is not low-rank whose singular values do not vanish, and it is also easily seen

from Fig. 6.2(a)-6.6(a) that the low-rank L is not sparse but very dense. Therefore, the

L+S decomposition is well-posed in the framework of dynamic imaging of structures:

the background L is low-rank but not sparse, and the innovation S is sparse but not

low-rank.

It is also seen that X’s singular values do not vanish whatsoever, which is some-
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what expected, because X is a superposition of a low-rank L and a sparse outliers S.

Moreover, this also implies that additional outliers S to a low-rank L, which results in

X = L+S, would corrupt its low-rank structure, which can’t be recovered by classic

PCA or SVD.

The efficiency of the proposed PCP based dynamic imaging method. For these

five cases, the computational time is 3.40 sec, 3.40 sec, and 3.44 sec for the beam

structure (a 7-sec segment of data, 22 frames), and 3.32 sec and 2.83 sec for the L-

shape structure (a 20-sec segment of data, 20 frames) on a desktop PC with a 3.20 GHz

Intel Core i5 650 processor and 6 GB RAM. Also, there is no tuning parameter in the

implementation of PCP: the universal trading parameters are set λ = 1/
√

max(m,n)

with λ = 1/
√
43200 for the beam and λ = 1/

√
36000 for the T-shape structure, and

PCP with the ALM algorithm always globally converges to the well-posed solutions.

6.5 Summary

Harnessing the data structure and damage signature intrinsic in the multiple close-up

images of structural components, this chapter presents a new data-driven framework

of high-rate dynamic imaging (close-up “filming”) of structures to automate real-

time local damage detection; it adopts the innovative principal component pursuit

(PCP) technique, which is able to “blindly” decompose the high-rate multiple frames

of structures into a superposition of a low-rank component and a sparse component.

In the proposed method, the low-rank component represents the irrelevant highly-

correlated background among the temporal frames, whereas the sparse component

captures the dynamic innovation information induced by damage.

Laboratory experiments are conducted on two concrete structures and results

shows that PCP based dynamic imaging method can effectively track the evolu-
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tionary damage information by the recovered sparse innovation component, which is

enhanced with the low-rank background suppressed from the frames. Its efficiency

and implementation are also demonstrated to be fast and straightforward.

The proposed dynamic imaging method does not require a parametric model or

prior structural information (e.g., geometry) for calibrations or reference; it holds the

potential for automated online damage surveillance and diagnosis of critical struc-

tural components which might be inaccessible to experts (especially during or post-

hazards) or as an alternative to experts’ visual inspection when they are not available

or not possible in real-time local structural health monitoring practice.
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Figure 6.1 : The dynamic imaging of structures paradigm for real-time automated
damage detection. The upper plot shows that the multiple frames (black) of the
crack developing in the structure (from time T0 to TN) can be thought of as a static
background (blue) plus the sparse innovation (red) induced by the cracking. The
middle plot shows that each temporal frame of resolutionM1×M2 is stacked into one
column of the data matrix X ∈ R

M×N (each column is of dimension M = M1 ×M2

rows representing one temporal frame and there are N columns), which is decomposed
into a superposition of a low-rank coherent background component L ∈ R

M×N and a
sparse innovation component S ∈ R

M×N that indicates the time-evolutionary damage
development. Each column of L ∈ R

M×N and S ∈ R
M×N is finally restacked back to

the original image dimension, and the bottom plot shows the recovered background
component and sparse component at time TN .
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(a)

(b) (c)

Figure 6.2 : (a) The L+S representation of the concrete structure with small damage
at the beginning of loading. The original multi-frame data matrix X ∈ R

43200×22 (a
segment of 7-second data consisting of 22 frames, each is of 180× 240) is decomposed
into L ∈ R

43200×22 plus S ∈ R
43200×22 by PCP and then each column is restacked back

to its original image dimension. Three temporal frames X ∈ R
43200×22 (left column)

are shown, where L ∈ R
43200×22 (middle column) represents the slowly changing

background, and S ∈ R
43200×22 (with outstanding white pixels) captures the subtle

damage with a small piece fell off from the middle top surface. (b) The singular values
of the recovered background component L ∈ R

43200×22. (c) The singular values of the
recovered sparse innovation component S ∈ R

43200×22.
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(a)

(b) (c)

Figure 6.3 : (a) The L+S representation of the concrete beam with medium damage
at the middle of loading. Three temporal frames X ∈ R

43200×22 (left column) (a
segment of 7-second data consisting of 22 frames, each is of 180 × 240) are shown,
with S ∈ R

43200×22 (with outstanding white pixels) captures the process where a piece
structure fell off from the left top surface. (b) The singular values of the recovered
background component L ∈ R

43200×22. (c) The singular values of the recovered sparse
innovation component S ∈ R

43200×22.
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(a)

(b) (c)

Figure 6.4 : (a) The L + S representation of the concrete beam with larger damage
at the middle of loading. Three temporal frames X ∈ R

43200×22 (left column) (a
segment of 7-second data consisting of 22 frames, each is of 180 × 240) are shown,
with S ∈ R

43200×22 (with outstanding white pixels) captures the process where a
large piece structure fell off from the right top surface. (b) The singular values of
the recovered background component L ∈ R

43200×22. (c) The singular values of the
recovered sparse innovation component S ∈ R

43200×22.
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(a)

(b) (c)

Figure 6.5 : (a) The L + S representation of the T-shape concrete structure with
crack opening at the beginning of loading. Three temporal frames X ∈ R

36000×23 (left
column) (a segment of 23-second data consisting of 23 frames, each is of 150 × 240)
are shown, with S ∈ R

36000×23 (with outstanding white pixels) captures the process
where a crack was opening in the middle. (b) The singular values of the recovered
background component L ∈ R

36000×23. (c) The singular values of the recovered sparse
innovation component S ∈ R

36000×23.
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(a)

(b) (c)

Figure 6.6 : (a) The L+S representation of the T-shape concrete structure with mul-
tiple cracks opening at the middle of loading. Three temporal frames X ∈ R

36000×21

(left column) (a segment of 21-second data consisting of 21 frames, each is of 150×240)
are shown, with S ∈ R

36000×21 (with outstanding white pixels) captures the process
where multiple cracks occurred. (b) The singular values of the recovered background
component L ∈ R

36000×21. (c) The singular values of the recovered sparse innovation
component S ∈ R

36000×21.
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Chapter 7

Multivariate Data Compression

Addressing the data-intensive issue in modern SHM systems of civil structures with

large-scale networked sensors, this chapter develops a new multi-channel data com-

pression scheme based on the low-rank structure of the multi-channel structural re-

sponses and the unsupervised multivariate learning technique independent component

analysis (ICA), which is able to transform a multivariate data set into a sparse rep-

resentation space where is optimal for coding and compression, such that both the

inner- and inter- dependencies (i.e., redundant information) between the multichannel

data are removed for efficient data compression. It is potential for rapid and reliable

data transfer, communication (e.g., multi-hop wireless sensor network), storage, and

retrieval in online or post-disaster (e.g., earthquake) monitoring and assessment ap-

plications of civil infrastructure.

7.1 Introduction

Dense sensor networks are becoming common in the monitoring systems of these

large-scale civil infrastructure, grasping comprehensive information of the structural

operating performance; as such, the acquired data may be on order of magnitude high

in volume, whose transfer, storage, retrieval (especially accessed by remote users),

and management remain challenging. Such also tends to impede wider applications

of wireless sensor network in infrastructures with limited communication bandwidth
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and battery power supply, which especially calls for efficient data transfer and retrieval

[123][85].

Data compression technique is therefore of particular importance to manage such

large data sets; it reduces the size of the original data from the acquisition station

for transfer, and then reconstructs them at the data analysis station. An effective

compression scheme contributes to efficient data transfer and fast access to measured

data for real-time analysis and evaluation of the structure, which is critical for online

monitoring and control. For offline applications, data of smaller size are stored for

further retrieval and access. This superiority also stands out in wireless sensor network

by taking up smaller communication bandwidth and saving more energy.

The underlying wisdom of the effectiveness of such an application lies in that

the raw measured structural vibration data are typically dependent and possess re-

dundancy, which leaves space for data compression before transmission and storage.

Transform coding is perhaps the most widely-used compression technique, whose

idea is to transform the measured data to a domain where they are more advanta-

geous for compression. Stearns and co-workers ([126][122][127]) examined a series of

existing transform coding algorithms for seismic waveform data, including discrete

Fourier transform (DFT), discrete cosine transform (DCT), Walsh-Hadamard trans-

form (WHT), linear predictor compression (LPC), and Karhunen-Loeve transform

(KLT). However, their effectiveness in compression of structural vibration responses,

whose characteristics are distinct from seismic waveform (excitation), is not studied.

Quite a few researchers in civil engineering communities have recently explored

the data compression methods of the measured structural vibration response data.

Lynch et al. [86] combined wavelet transform and Huffman coding for lossless data

compression and transfer to alleviate the power demand on wireless SHM systems.
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Zhang and Li [156][157] studied the wavelet-based and LPC methods, respectively, for

compression of structural vibration sensor data. Bao et al. [9], Mascarenas et al. [92],

Sadhu et al. [116], and O’Connor et al. [109] studied a new compression technique

called compressive sampling for structural responses. Whereas encouraging results

are seen, high compression ratio is not available in lossless compression application

nor accurate reconstruction achieved in lossy compression algorithm. Considering the

voluminous data are measured from the dense sensor network in infrastructures, it

would be desired to seek more effective methods realizing high compression ratio as

well as accurate reconstruction for efficient data transfer and further applications.

One significant drawback with the existing methods-DFT, DCT,WHT, and wavelet,

is that they are non-adaptive, i.e., they use fixed transform basis prior to data com-

pression process. This may cause serious problem in practice, e.g., an unfortunate

choice of transform basis (cosine, wavelet, etc.), which may not be suitable to a given

data set, will provide poor compression performance. Also, these non-adaptive meth-

ods can only be applied to single-channel data separately.

On the other hand, it is most useful to find the natural transform basis from the

given data sets. Enhanced with a suitable learning rule, an appropriate transform

adaptive to the multi-channel data set itself is guaranteed to provide optimal com-

pression performance. The aforementioned KLT is an adaptive transform technique;

it decomposes the data set into an uncorrelated space where the redundancy of the

inter-correlation within the data set is removed. It is noticed in Spanias et al. [122]

that KLT outperformed LPC and gave better performance than other (non-adaptive)

transform coding algorithms. However, it only exploits the second-order statistics of

the data set.

This chapter proposes a new adaptive transform compression method for struc-
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tural response data based on independent component analysis (ICA) [64]. Compared

to KLT, ICA transforms the multivariate data set into a new statistically independent

representation space such that not only the second-order redundancy, but also the

high-order dependency within the data set can be removed for optimal compression

performance. To our knowledge, applications of ICA have not yet been explored in

data compression in the literatures in any other field.

The proposed method particularly exploits the ICA learning rule, which is found

to naturally yield optimal transform for data compression. Besides, it takes advantage

of the observation that multi-channel structural dynamic responses are typically low-

rank, such that a considerable number of ICA-transformed components are principled

(truncated) to achieve higher compression efficiency with fairly little data distortion.

The compression performance in two sets of real-measured structural seismic response

data from the Northridge Earthquake 1994 [118] shows that the proposed PICA

method achieves dramatically high compression ratio with excellent reconstruction

accuracy, as compared to the popular wavelet compression method. It is also shown

that (principled) ICA slightly outperforms the (principled) PCA method-that used

to be considered optimal multivariate data compression scheme-with respect to both

CR and reconstruction accuracy, and the advantages of ICA over PCA are expected

to be significant if the data set processes stronger high-order dependency.

7.2 Information and entropy

For a random experiment (variable) υ including all possible outcomes
{

υ1, υ2, ..., υN
}

with an occurrence probability distribution
{

p(υ1), p(υ2), ..., p(υN )
}

(
∑

j p(υ
j) = 1),

the self-information [119] within each event υj (j = 1, ..., N) is quantitatively mea-
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sured by

i(υj) = − log p(υj) (7.1)

The most widely used logarithm is log2, in which case the information unit is

bit. For example, a binary-distributed (N = 2) variable with p(υj) = 1/2(j = 1, 2)

contains one-bit information.

Eq. (7.1) shows that an event with smaller probability contains more information

amount. Intuitively speaking, the occurrence of a rare event reveals a lot of informa-

tion. If all the outcomes are independent, the average information associated with υ

is termed entropy, given by

H(υ) = −
N
∑

j=1

p(υj) log p(υj) (7.2)

A random variable υ with small entropy generally possesses sparse distribution,

e.g., the entropy of υ with a pulse (sparsest) distribution (p(υj) = 1, p(υi) = 0, i 6= j)

is zero. In such a case, there is no information (randomness) contained in υ, for it is

completely determined (i.e., the outcome is always υj).

Concerning lossless data compression, Shannon’s theory [119] states that the av-

erage (binary) codeword length needed by the optimal encoding scheme for υ at best

equals its entropy. On the other hand, if the outcomes of υ are statistically dependent,

its entropy will always be smaller than that of an independent υ; that is,

H(υ
∣

∣υ−1, υ−2, ..., υ−M ) ≤ H(υ) (7.3)

where
{

υ−1, υ−2, ..., υ−M
}

is a set of M past histories.

A clever compression strategy becomes clear that by exploiting the inherent depen-

dency within the data, the original data can be transformed into a new representation

that has smaller entropy and thus possibly consumes less average codeword length.
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This refers to the fundamental idea of transform coding scheme. The next section

introduces the ICA transform that yields optimal representation for compression of

data.

As per Eq. (7.1) to Eq. (7.3), the formulations can be generalized to the vector

space, which deals with multivariate random variable vector υ = [υ1, υ2, ..., υn]
T in-

stead of a single variable υ. In the chapter, superscript generally denotes time index

while subscript locates spatial index of a signal or a random variable; bold lower-case

and bold upper-case letters are understood as vectors and matrices, respectively.

7.3 Independent component analysis

7.3.1 The learning rule of ICA

Given n-dimensional data set (variable vector) x = [x1, x2, ..., xn]
T , ICA is able to

linearly transform the multivariate data into a statistically independent space, i.e.,

y = Wx (7.4)

such that the resultant random variable vector y = [y1, y2, ..., yn]
T , termed indepen-

dent component (IC), is most mutually independent. W is an n × n time-invariant

transform matrix, each row of which wi is found by imposing the transformed com-

ponent (random variable) yi as independent as possible among all possible directions,

yi = wix (7.5)

The above equations incorporate ICA into a statistical framework by dropping

the time index which is commonly associated with the ICA model [64]

x = Ay (7.6)
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where A is the mixing matrix and A = W−1. Eq. (7.6) is usually referred to as

blind source separation (BSS) problem [34], where x and y are mixtures and sources,

respectively. Here it is termed as recovery transformation, meaning recovery of x

from the transformed y.

The principle of the ICA learning rule which maximizes independence of yi is

based on the Central Limit Theorem, which states that a sum of independent random

variables tends towards Gaussian distribution. This implies that a (linear) mixture

of independent variables is more Gaussian than a single variable. Using the theorem,

ICA seeks components which are as non-Gaussian as possible, as the estimation of

the IC’s. In statistics, non-Gaussianity is rigorously measured by negentropy as

J(yi) = H(ygau)− H(yi) (7.7)

where yi and the Gaussian variable ygau are both standardized to zero-mean and unit-

variance. Negentropy evaluates the entropy distance of yi from ygau, which has the

largest entropy among all random variables with equal variance [36][64]; this implies

that the obtained yi that has largest negentropy must have smallest entropy (thus

tends to be sparse, also see [146]) among all possible transforms. Therefore, the

ICA learning rule naturally yields such optimal component yi as will consume fewest

codeword.

An exact estimation of negentropy of a random variable is difficult in practice.

However, it can be approximated by

J(yi) = [E{G(yi)} − E{G(ygau)}]2 (7.8)

in which E{·} is the expectation operator, and G(·) represents some non-quadratic

function. The Gaussian function

G(yi) = − exp(−y2i /2) (7.9)
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has the attractive property that it is insensitive to outliers and is adopted in this

study.

7.3.2 ICA & mutual information

The learning rule of ICA can also be incorporated into the mutual information frame-

work [64]; it theoretically justifies that ICA provides optimal transform for data com-

pression, as described in the following.

The mutual information among the ICA-transformed components y = [y1, y2, ..., yn]
T

is defined by

I(y) =
n

∑

i=1

H(yi)− H(y) (7.10)

which is the entropy difference between the sum of n individual random variables and

the “joint” random variable vector y. Mutual information naturally measures the

statistical dependency between the random variables. For example, if the random

variables are statistically independent, the mutual information of y is minimized to

zero, indicating that one variable gives no information on any other one; otherwise it

is positive.

According to the property of mutual information [36], if there exists an invertible

linear transform y = Wx, then

I(y) =
n

∑

i=1

H(yi)− H(x)− log |detW| (7.11)

Since y is standardized and uncorrelated after preprocessing (described in later

section),

E[yy
T ] = E[(Wx)(Wx)T ] = WE[xx

T ]WT = I (7.12)
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Take determinant operator of both sides,

detW det E[xx
T ] detWT = det I = 1 (7.13)

For a given data set x, det E[xxT ] is determined; this implies that detW must be

a constant. Substituting Eq. (7.7) into Eq. (7.11) gives

I(y) = −
n
∑

i=1

J(yi) + (
n
∑

i=1

H(ygau,i)− H(x)− log |detW|)

= −
n
∑

i=1

J(yi) + Constant
(7.14)

This equation justifies that ICA’s learning rule of maximizing negentropy J(yi) leads

to a minimization of the mutual information between y. Therefore, the statistical

dependency within x is removed and the ICA-transformed components y are most

mutually independent, i.e., no further dependency can be exploited in y . ICA thus

naturally yields the optimal (linear) transformation adaptive to data itself for com-

pression in statistical framework.

It should be mentioned that KLT used to be considered as the optimal trans-

form coding [4] restricted to the second-order dependency structure of the data, by

transforming data into an uncorrelated space. On the other hand, ICA additionally

exploits high-order dependency of the data such that the transformed representation

is not only uncorrelated but also most statistically independent. This distinction lies

in their different learning rules: ICA imposes independence which is a much stronger

condition than uncorrelation used by KLT. In this sense, ICA transform is superior

over KLT for data compression.

7.3.3 Implementation of FastICA

Although ICA can be implemented in different frameworks (e.g., infomax [12], joint

approximate diagonalization of eigenmatrices (JADE) [27], etc.), this study uses the
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FastICA algorithm [64] with a cubic convergence rate, which is computationally ef-

ficient and robust. During the implementing FastICA, it is common to conduct

preprocessing procedures on the data such like centering and whitening, which serve

to simplify the ICA implementation. Especially in the whitening step, one simple

yet useful step is adopted by the proposed compression scheme, as detailed in the

following.

7.3.3.1 Preprocessing of FastICA

The first preprocessing step embedded in the FastICA algorithm is centering the

data x to zero-mean; this also makes the transformed components y zero-mean. The

following step is to whiten x using principal component analysis (PCA, a special case

of KLT) or eigenvalue decomposition (EVD) operated on the covariance matrix R,

R = E[xx
T ] = QΛQT (7.15)

whereQ is the orthogonal eigenvector matrix, and Λ is the diagonal eigenvalue matrix

Λ = diag(λ1, λ2, ..., λn) (λ1 ≥ λ2... ≥ λn). Whitening then transforms x into an

uncorrelated representation with principal components x̂ = [x̂1, x̂2, ..., x̂n]
T by

x̂ = Λ−1/2QTx = Vx (7.16)

where V = Λ−1/2QT is the whitening matrix. Similarly there exists a de-whitening

matrix U = QTΛ1/2 = V−1 for recovery or inverse transform as

x = QTΛ1/2x̂ = Ux̂ (7.17)

Associated with the whitening procedure, one strategy especially appealing to data

compression is to drop those principal components with significantly small eigenval-

ues. This is based on the observation that structural responses are typically low-rank,
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since in real world, only a few modes are excited out and present in the structural

responses (see Section 1.3.2 of Chapter 1). As small eigenvalue indicates small energy

of the corresponding principal component, it would cause little data loss by retaining

those dominant components with larger eigenvalues. Meanwhile, it achieves higher

compression by only encoding the retained components.

A stable truncation criterion would be according to the ratios between each λi

and λ1. Assume m principal components are trivial and discarded (principled), the

remaining components becomes x̂ = [x̂1, x̂2, ..., x̂n−m]
T and the recovery is conducted

by

x̃ = Ux̂ (7.18)

where x̃ = [x̃1, x̃2, ..., x̃n]
T approximates x, and U is an n× (n−m) matrix obtained

by eliminating the last m columns of U. Note that this strategy renders the first

cause for data loss in the proposed compression scheme.

7.3.3.2 FastICA algorithm

The FastICA algorithm which is based on a fixed-point iteration scheme is widely used

to implement ICA [64]. After preprocessing, FastICA seeks the de-mixing vector wi,

one by one (deflation scheme), such that the resultant component

yi = wix̂ (7.19)

maximizes the contrast function such like Eq. (7.8). Therefore, the ICA transform is

implemented as

y = Wx̂ (7.20)

and the recovery transformation is

x̂ = Ay (7.21)
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where y = [y1, y2, ..., yn−m]
T , and A = W−1, both of which are (n −m) × (n −m)

matrices.

FastICA is computationally fast, enjoying a cubic convergence. This is especially

suitable for an efficient data compression scheme aimed by this study; the detailed

algorithm for performing FastICA can be found in [64].

7.4 Quantization and arithmetic coding

7.4.1 Quantization

As mentioned above, the ICA-transformed components yi (with possibly smallest

entropy) tend to be sparse, with most elements approaching to zero. It would be

most useful to drop these elements for data compression. On the one hand, the data

needed to be encoded are significantly reduced such that higher compression can be

achieved. On the other hand, the remaining data retain most information of the

original data; as a result, the reconstructed data suffer little distortion.

The general and effective method to realize this purpose in lossy data compression

is quantization [117], which is the process of assigning a small data set to represent

a large data set. The ICA compression scheme uses the simplest uniform scalar

quantizer which rounds a value to its closest integer as

yji =
⌈

yji
⌉

(7.22)

As each yi is very sparse, the quantized component yi will suffer little data loss in

the ICA compression scheme. This accounts for another cause for data loss in the

proposed compression scheme.
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7.4.2 Lossless Arithmetic coding

The quantized components yi are then encoded using the entropy encoding scheme,

among which Huffman and Arithmetic algorithm are two most popular ones. It is

known that Arithmetic algorithm yields excellent performance in encoding data with

skewed distribution (skewness is with respect to the third-order statistics). This

makes it especially suitable to encode yi, which has a very sparse representation.

The idea of arithmetic coding [114][117] is to identify each element of the data

sequence with unique real number between 0 and 1; each real number is then assigned

a binary code. During the coding process, only the non-zero elements in yi needs to

be encoded to a binary codeword dictionary Yi (correspondingly y to Y), while their

positions are also recorded, which are only used in the data recovery stage. Decoding

Yi exactly to yi can be easily carried out using the dictionary and the recorded

positions of the non-zero elements.

7.5 ICA data compression scheme

Summarizing the above formulations, the PICA-based method data compression

scheme is implemented along the flowchart (Fig. 7.1). Before data transfer in the

acquisition station (wired or multi-hop wireless sensor network (Fig. 7.2)), the multi-

channel data set is processed by FastICA, including the truncation step and ICA

transform step, yielding the sparse IC’s, which are then quantized and encoded to a

dictionary. After transferring this dictionary to data analysis station, it is decoded

and reconstructed to the original data set along the inverse procedures.
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Preprocessing FastICA Quantization Arithmetic Coding

Inverse ICAInverve Preprocessing Arithmetic Decoding

Figure 7.1 : The flowchart implementing ICA data compression scheme (the first line
conducts compression and the second one performs recovery).
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Figure 7.2 : The multivariate ICA data compression scheme for a multi-hop wireless
sensor network. The raw sensor data xi (the ith channel) is first transformed to a
larger hop sensor node in the neighborhood, grouping to a multi-channel data set x
which is then compressed by the multivariate ICA scheme to y with much smaller
size. y is transferred to the base station and recovered to x.
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7.6 Structural seismic response examples

7.6.1 Two sets of seismic response data

This section presents two examples to demonstrate the capability of the principled

ICA compression method, for the measured structural seismic responses of the Los

Angeles Fire Command and Control (FCC) building (Fig. 4.10) and the University of

Southern California (USC) hospital building (Fig. 2.16(a)) both from the Northridge

Earthquake 1994 [118][100][101]. The FCC building is a two-story base-isolated struc-

ture with embedded sensors outlined as shown in Fig. 4.10. The acceleration responses

from all the nine channels (Sensor # 6, 7, 9, 10, 11, 12, 14, 15, and 16) in the East-

West (EW) direction are used in the example. Each channel data has a time history of

60 seconds sampled at 100 Hz, yielding 6000 samples per channel (e.g., Fig. 7.3 shows

the acceleration of CHAN 7). The largest value out of these originally stored samples

is +306.319 cm/sec2; therefore, at least a 20-bit digital format (uniform scalar quan-

tizer with data of fixed point type) is consumed by each sample for transmission and

storage. The conditions of the acceleration responses of the eight-story base-isolated

USC hospital building are similar, except that all the 15 sensors in the EW direction

are selected (#6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, and 24) on the

foundation, lower level, 4th floor, 6th floor, and the roof.

7.6.2 Performance of PICA and comparison to other methods

The proposed method is applied to the 9-channel and 15-channel data sets, respec-

tively. During the whitening of FastICA, the EVD is conducted, yielding the eigen-

value ratios shown in Fig. 7.4. It is seen that in both cases the eigenvalues decay very

fast; in this study, the truncation criterion is set at λi/λ1 = 3% (the effects of differ-
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ent truncated component number are discussed later). Therefore, only six principal

components with larger eigenvalues in the FCC case and ten ones in the USC case

are retained; simultaneously the remaining three columns of the de-whitening matrix

in the FCC case and five columns in the USC case are eliminated for later recovery

transform.

Figure 7.3 : The seismic response data of the FCC building measured at Channel 7
(0-30 second).

FastICA is then performed on the remaining principal components to further

remove their high-order dependency, yielding six IC’s in the FCC case and ten ones

in the USC case, which are then quantized. Fig. 7.5 shows the quantized IC1 of the

FCC data, which, compared to the original response data (e.g., Fig. 7.3 at Channel

7), appears to be fairly sparse with only 897 (14.95%) non-zero elements, and its

magnitude is much smaller, which would consume much fewer bits. On contrary, if

directly quantizing the response data of CHAN 6, for example, it is not sparse with

5217 (86.95%) non-zeros. Subsequently, arithmetic algorithm is applied to encode the
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Figure 7.4 : Whitening results of the 9-channel seismic response data of the FCC
building and 15-channel data of the USC building.

quantized ICs (the zero-elements are removed and only their positions are recorded)

by assigning a binary code dictionary for each of them. The data recovery undergoes

the inverse process, using only six components.

For comparisons, the popular wavelet transform (WT) (single-channel) coding

scheme is also conducted on the 9-channel and 15-channel data sets, respectively.

The db5 wavelet basis is used to decompose the data of each channel into five levels.

In the following, the standard Dohono’s algorithm [44] is used to shrink the wavelet

coefficients on each level, which are then quantized by the same scalar quantizer. Fi-

nally, the quantized non-zero coefficients from each channel are, respectively, encoded

by the arithmetic coding scheme.

The compression efficiency is evaluated by compression ratio (CR), defined as the

ratio between the original data size and the compressed data size (the unit is bits).

In addition, the bit rate is also computed as the consumed bits per sample. The
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recovery accuracy evaluation at ith channel is calculated by

εi = 1−
‖x̃i − xi‖ℓ2

‖xi‖ℓ2
(7.23)

Table 7.1 presents the results which are averaged per channel of the FCC data

and USC data, respectively. Take the FCC case for example, the first row shows

non-zero sample numbers per channel that have been the transformed and quantized.

It is seen that the principled IC, carrying fewest non-zero samples, is sparsest over

IC and wavelet. Furthermore, encoding the principled IC consumes much fewer bits

(per channel) than the wavelet coefficient and IC, thus yielding higher CR (67.78)

and lower bit rate (0.29). Note that PICA only needs to encode six ICs, while stan-

dard (non-truncated) ICA and WT have to encode 9 components; this significantly

increases the CR of PICA (67.78) over ICA (44.59) and WT (13.33), as well as al-

leviates the computational costs (for the complete process of encoding and decoding

(Fig. 7.1)) of PICA (2.58 sec) over ICA (3.71 sec) and wavelet (6.29 sec), which also

indicates the computational efficiency of the multivariate FastICA transform over the

univariate wavelet transform in compression of the multiple-channel data sets. Similar

results are also seen in the USC example, and not repeatedly detailed. The outcomes

live up to the finding of the proposed method that PICA exploits the high-order statis-

tical dependency among the data set and the transformed components have smallest

entropy, thus consuming fewest codeword among all possible linear transforms.

It is also worthwhile noting that, though the transformed and quantized (prin-

cipled) IC and wavelet coefficient (Fig. 7.5) have comparable few non-zero sample

numbers (e.g., in the FCC case, 1232 versus 1403), encoding the IC consumes much

less bits than the wavelet coefficient. This is because the IC, which is most inde-

pendent (with respect to even high-order statistics), is favorable to encode by the
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Figure 7.5 : The quantized principled IC1.

Figure 7.6 : The quantized shrunk wavelet coefficients of channel 7 of the FCC data.

arithmetic algorithm that is especially suitable for the skewed component, as men-

tioned above.
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With respect to the recovery accuracy, WT outperforms PICA and ICA. However,

ICA and PICA also yield excellent reconstruction accuracy. For example, in the FCC

case, PICA yields 93.32% recovery accuracy while achieving a dramatically higher

CR (67.78) than WT (13.33). Fig. 7.7 and 7.8 show the recovery performance for

channel #6 of PICA and WT methods of the FCC data in both time and frequency

domains. Clearly both WT- and PICA-recovered data yields excellent match with

the original data in both cases. On the other hand, PICA achieves a considerably

higher CR (67.78) than standard ICA (44.59), at cost of only 1.17% less recovery

accuracy. This proves that a simple additional truncation step of PICA pays off by

taking advantage of the fact that structural vibration data set from dense sensors are

low-rank. Same conclusion can also be drawn in the USC example.

Therefore in practice, if the requirement on the reconstruction accuracy is ex-

tremely demanding and the computational time is less important, WT coding method

would be a good choice. However, in cases where the data set is considerably large,

or in online application where fast transfer is critical, or in multi-hop wireless sensor

with inadequate communication bandwidth and power supply, PICA is a reliable and

efficient alternative.

7.6.3 Effects of number of retained components comparing to PCA

When applying the truncation step of PICA, the effects of retaining different num-

ber of principal components on the CR and recovery accuracy are studied and the

results are shown in Fig. 7.9. Obviously, there is a tradeoff between the CR and re-

construction accuracy (in fact, also computational costs). However, it is seen in both

FCC and USC cases that the recovery accuracy grows very slowly when retaining

more and more components while the CR grows rapidly by dropping more and more
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Figure 7.7 : The PICA- and wavelet- recovered response time history data of channel
#6 of the FCC building (12-18 sec is shown for visual enhancement).

Figure 7.8 : The power spectral density (PSD) of the PICA- and wavelet- recovered
response data of channel #6 of the FCC building.

components, and a reasonable tradeoff can be achieved in the neighborhood of retain-

ing 6 and 10 components in the FCC and USC cases, respectively, i.e., setting the
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truncation criterion λi/λ1 ≈ 1%−5% is robust and reliable for practical applications.

Also comparing ICA and PCA (only with the whitening step of the FastICA),

PPCA and PICA, it is found that the ICA-based methods are slightly better than

those only conducting PCA in both CR performance and reconstruction accuracy,

while the computational costs of the ICA methods are also slightly higher than PCA

methods (thanks to the efficient FastICA algorithm), as shown in Table 7.1 and

Fig. 7.9. As mentioned in the theoretical section, the advantages of ICA over PCA

depend on the amounts of higher dependency within the data set. The results show

that such dependency is small in the FCC and USC data sets, so this advantage is

not large but is expected to become more obvious when the structural vibration data

possess more high-order dependency. Also it is interesting to note that as the number

of the retained components is larger, the advantage is larger, especially for the CR

performance of the USC case in Fig. 7.9; this tends to indicate that PICA would

stand out from PPCA in handling very large data set (with numerous components or

channels).

7.7 Summary

Exploiting the low-rank structure and a novel lossy data compression scheme based

on principled ICA is developed in this chapter. It is deduced that the ICA learning

rule naturally maps the data set into an independent sparse representation space,

where the transformed components have small entropy and can thus be optimally

encoded.

The example using two real-measured structural seismic response data sets (i.e.,

the FCC and USC hospital building from the Northridge Earthquake 1994) is pre-

sented to demonstrate the capability of the proposed method. Using the low-rank
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(a) (b)

Figure 7.9 : (a) The compression ratio, and (b) recovery accuracy of the PICA com-
pared to PPCA of the FCC data and the USC data, with different retained component
numbers.

property of the structural vibrations, the multi-channel data sets are first principled

(truncated) in the implementation of FastICA, dropping those principal components

with small singular values while retaining excellent reconstruction accuracy. Results

show that such a strategy achieves much higher compression efficiency at a little more

cost of reconstruction accuracy. Compared with the popular wavelet transform cod-

ing scheme, the proposed PICA method achieves a dramatically higher compression

ratio (˜68) while causing fairly small distortion (˜94% recovery accuracy). It is also

shown that (principled) ICA slightly outperforms (principled) PCA which used to be

considered optimal multivariate transform coding scheme, and the derived formula-

tions of PICA compression method indicate that such an advantage would become
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obvious when the structural vibration data set possesses more high-order redundancy

or when the data dimension (channel number) is large.

The proposed method uses the FastICA algorithm, which enjoys cubic convergence

and is thus computationally efficient. Another advantage of the PICA method resides

in its adaptive ability to the data itself, naturally searching for optimal transform basis

by the ICA learning rule. Therefore, a “blind” implementation of efficient compression

and recovery process may be realized in practice, which is highly desired, especially in

real-time wired or multi-hop wireless data transmission, access, and retrieval during

extreme events (e.g., earthquakes).
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Table 7.1 : Compression performance of the FCC and USC examples.

Original Direct Wavelet PCA ICA PPCA PICA

FCC

(Trans+Qntz)

samples
6000 5256 1403 1250 1232 854 846

Compressed

data (bits)
- 27705 9002 2735 2691 1793 1771

Compression

ratio
- 4.34 13.33 43.89 44.59 66.91 67.78

Bit rate

(bits/sample)
20 3.618 1.500 0.456 0.449 0.299 0.295

Recovery

accuracy (%)
- 99.98 99.85 94.36 94.49 93.16 93.32

Comp. Time (En-

& De-code) (Sec)
- 20.21 6.29 3.47 3.71 2.32 2.58

USC

(Trans+Qntz)

samples
6000 5170 1218 1701 1602 1162 1106

Compressed

data (bits)
- 26566 7985 3376 3259 2196 2129

Compression

ratio
- 4.52 15.03 35.55 36.83 54.67 56.39

Bit rate

(bits/sample)
20 4.428 1.331 0.563 0.543 0.366 0.355

Recovery

accuracy (%)
- 99.97 99.81 93.99 94.11 89.61 89.64

Comp. Time (En-

& De-code) (Sec)
- 32.64 9.25 8.05 8.09 5.01 5.31
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Chapter 8

Low-rank Structure of Big Data

The multivariate data compression scheme developed in Chapter 7 benefits from

the low-rank structure of the multi-channel structural seismic responses. However,

it has a premise that the number of the active modes be much less than that of

the sensor for a low-rank representation. This chapter further exploits the intrin-

sic low-dimensional structure of large-scale structural response data, and proposes a

matrix-reshape scheme to ensure a low-rank representation of any large-scale struc-

tural response data for most effective multi-channel data compression, removing such

a common premise as for principal component analysis (PCA) or singular value de-

composition (SVD). The key idea of the matrix reshape scheme for guaranteed low-

rank representation takes advantage of that mode information (typically few are ac-

tive, hence the rank of the structural response data matrix is small) remains invariant

regardless of the reshaping of the data matrix, which is theoretically justified in this

chapter. The effectiveness of the proposed method is demonstrated by significantly

compressing the large-scale structural seismic and typhoon response data of the Can-

ton Tower recorded by its SHM system. It is also shown that when using as big

data as possible, the low-rank representation becomes more outstanding and hence

achieving more effective compression [104].
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8.1 Traditional principal component analysis (PCA)

8.1.1 Principal components & vibration modes

In Section 1.3.2 of Chapter 1, the connection between the principal components and

vibration modes has been reviewed. Essentially, in structural dynamics, under some

assumption, the principal directions would coincide with the mode directions [48]

with the corresponding singular values indicating their participating energy in the

structural responses X ∈ R
m×N , i.e., the structural active modes are captured by r

principal components under broadband excitation.

8.1.2 Dimensionality reduction by PCA

With r active principal components, it is possible to reduce the dimension of X ∈

R
m×N by performing a linear transform,

Zr = UT
r X (8.1)

where Zr = [z1, ..., zr]
T ∈ R

r×N are the r dominant (uncorrelated) principal compo-

nents, and Ur = [u1, ...,ur] ∈ R
m×r is the first r columns of U ∈ R

m×m. The recovery

of X ∈ R
m×N from the reduced Zr ∈ R

r×N can be performed by

X = UrZr (8.2)

For data compression, instead of encoding the original X ∈ R
m×N with m-channel

data, one only needs to encode Z ∈ R
r×N with r principal components after the

multivariate dimension reduction (the (entropy) encoding step, which can further

compress each principal component, is not discussed in this study, however; details

can be referred to Ref. [117] or Chapter 7).
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Obviously, the dimension reduction for data compression is most effective when

r ≪ m (X ∈ R
m×N needs to be low-rank), i.e., the channel (sensor) number needs

to be (much) larger than that of the involved modes, which is in fact a common

assumption where PCA is found effective such as in damage identification and fea-

ture extraction [39][49][73]. However, it is not satisfied in many situations: for civil

engineering structures, typically large-scale, the sensor number m is not so much

more than (often times even less than) the involved r modes; as a result, r ≪ m

can’t be guaranteed for a low-rank representation. A scheme of matrix reshape is

proposed to remove this limitation for wider applicability of PCA in multi-channel

data compression, as detailed in the following.

8.2 Data compression by low-rank representation with ma-

trix reshape

Originally, X ∈ R
m×N is hardly low-rank; however, applying a simple matrix reshape

scheme “generates” a low-rank representation. First, divide the time history of each

channel, say, xi ∈ R
N (ith channel), into l segments, yielding (xi)j ∈ R

v as the jth

segment of xi, where v = N/l. Then re-stack them into a new structural response

matrix X̄ ∈ R
w×v, where w = m× l and its ith row x̄i ∈ R

v as a v-point segment of

xi ∈ R
N . Therefore, the SVD of X̄ ∈ R

w×v is

X̄ = ŪΣ̄V̄T =
r′
∑

i=1

σ
′

iūiv̄
T
i (8.3)

The key idea is that because there are still only r modes involved in the re-stacked

matrix X̄ ∈ R
w×v (r ≪ min (v, w)), then

rank(X̄) = r′ ≈ r ≪ min(w, v) (8.4)
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i.e., X̄ becomes a low-rank matrix. The matrix reshape scheme is graphically demon-

strated in Fig. 8.1.

Eq. (8.4) can be theoretically justified as follows. Transform each row of X̄ ∈ R
w×v

to the frequency domain f ∈ Ω by right-multiplying X̄ ∈ R
w×v with the orthonormal

sinusoid basis matrix C = [c1, ..., cv]
T ∈ R

v×v where ci,j =
√

2/v cos (π(2j + 1)i/2v),

Ȳ = X̄C (8.5)

in which Ȳ = [ȳ1, ..., ȳw]
T ∈ R

w×v with the ith row ȳi(f) ∈ R
v as the discrete cosine

transform (DCT) of x̄i(t) ∈ R
v.

Because there are r modes involved (active) under broadband excitation, then for

any row of X̄ ∈ R
w×v, say, x̄i(t) ∈ R

v, its DCT ȳi(f) ∈ R
v has at most r active

(non-zero) elements ȳi(f1), ..., ȳi(fr), that is,

Ȳ =













ȳ1(f)

...

ȳw(f)













=













0 · · · ȳ1(f1) · · · 0 · · · ȳ1(fr) · · · 0

...
. . .

...
. . .

...
. . .

...
. . .

...

0 · · · ȳw(f1) · · · 0 · · · ȳw(fr) · · · 0













(8.6)

i.e., there are r active (non-zero) columns and rank(Ȳ) ≈ r; in addition, C ∈ R
v×v is

orthonormal, therefore, rank(X̄) = rank(X̄C). In summary,

r′ = rank(X̄) = rank(X̄C) = rank(Ȳ) ≈ r ≪ min(w, v) (8.7)

In analogy, effective data dimension reduction is finally realized by

Z̄r′ = ŪT
r′X̄ (8.8)

Because r′ ≪ min(w, v) , a significant compression ratio ρ = r′/min(w, v) can be

achieved. Recovery is performed by

X̄ = Ūr′Z̄r′ (8.9)
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and restacking X̄ ∈ R
w×v back to X ∈ R

m×N .

Note that the re-stacking guaranteeing low-rank representation removes the con-

straint that the channel (sensor) number m > r (to ensure redundancy). Besides,

the compression ratio ρ = r′/min(w, v) suggests re-stacking X̄ ∈ R
w×v as square as

possible for most effective compression efficiency, as will be illustrated by the ex-

amples in the following section. It is also interesting to note that long time history

(large dimension N ) with r′ approximately invariant is advantageous for a “most low-

rank” representation for data compression, which will also be shown in the following

examples.

8.3 Application on SHM data of the Canton Tower

The proposed data compression scheme is applied on the real-measured SHM data

of the Canton Tower in this section. The Canton Tower is a high-rise tall building

of 610 meters, located in Guangzhou City, China; more description of this structure

is referred to Ref. [108]. An advanced SHM system has been instrumented with

more than 800 various types of sensors to continuously monitor its performance dur-

ing construction and service stages. Twenty uni-axial accelerometers, whose layout

is shown in Fig. 8.2, were used to continuously record the structural vibration re-

sponses (accelerations) in the X and Y axis, with a sampling frequency of 50 Hz.

Three data sets of seismic responses and two data sets of typhoon responses are

used for demonstrations in this study: the one-hour Burma Earthquake responses

(21:29:49-22:29:49, March 24, 2011) X ∈ R
20×180000, the one-hour Sumatra Earth-

quake responses (16:08:04-17:08:04, April 11, 2012) X ∈ R
17×180000, the one-hour

Japan Earthquake responses (13:25:37-14:25:37, March 11, 2011) X ∈ R
20×180000, the

twenty-three-hour Nanmadol Typhoon responses (00:07:45-22:07:45, August 31, 2011)
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X ∈ R
20×4140000, and the eighteen-hour Haima Typhoon responses (00:07:22-17:07:22,

June 23, 2011) X ∈ R
18×3240000.

8.3.1 Structural seismic response data

In original data dimension (m = 20, N = 180000), they are not low-rank. Fig. 8.3

shows the distribution of their eigenvalues, indicating a compression ratio of about

ρ = 8/20 = 0.4 can be achieved, which is not significant. On contrary, using a

matrix reshape factor of l = 100, the new data matrices become X̄ ∈ R
2000×1800

(X̄ ∈ R
1700×1800 for the Sumatra Earthquake), whose eigenvalues decay very fast

(Fig. 8.4): the eigenvalues after about the 40th have been approaching to trivial.

Fig. 8.5 further presents the tradeoff between the dimension reduction and the

recovery error (in a root-mean-square measure). It is seen that about ρ = 45/1800 =

0.025 can be safely achieved with stabilized recovery error, which is consistent with

the distribution of their eigenvalues that those after about 40th have become trivial.

It is also seen that the structural seismic responses recovered from the compressed

data suffer little distortion in both the time-domain and frequency-domain and tend

to approach the denoised (smoothed) data [149] of the original structural responses;

see Figure 8.6 for example, of the first channel data from the Burma Earthquake case.

Fig. 8.7 also shows the advantage of using a reshape factor l that makes the

new matrix as square as possible. In Fig. 8.7(a), it is shown that the ranks r′ of

the new matrices with different reshape factor do not have much difference (about

25). However, choosing a suitable reshape factor that maximizes min(w, v) can make

the eigenvalues decay fastest, thus achieving most significant compression ratio ρ =

r′/min(w, v) ; this is seen in Fig. 8.7(b) that l = 100 (w = 2000, v = 1800) makes the



www.manaraa.com

189

eigenvalues of the corresponding matrix decaying fastest (“most low-rank”), although

other values in the neighborhood of l = 100 also have reasonably significant data

compression ratio.

8.3.2 Compressing “big data” of structural typhoon responses

The data dimension of the structural typhoon responses is even more large-scale:

X ∈ R
20×4140000 (82.8 million data points) for the Nanmadol Typhoon and X ∈

R
18×3240000 (58.32 million data points) for the Haima Typhoon. To demonstrate the

advantage of the proposed method in compressing very large (or as large as possible)

data set, the eigenvalue distributions (normalized) of the different segments (different

hour-lengths) of the reshaped X ∈ R
20×4140000 and X ∈ R

18×3240000 are shown in

Fig. 8.8 and Fig. 8.9. It is seen that for all the typhoon response data sets, the

reshaped matrices have low-rank representation, with the eigenvalues decaying very

rapidly. However, the low-rank representation of larger data set stands out with

fastest-decaying eigenvalues hence achieving most significant data compression: for

the 23-hour data set of the Nanmadol Typhoon responses and the 18-hour data set

of the Haima Typhoon responses, a significant compression ratio of about ρ = 0.01

can be achieved.

8.4 Conclusions

This chapter presents a new multi-channel data compression algorithm by exploiting

the intrinsic low-dimensional structure of large-scale structural seismic and typhoon

responses. A matrix reshape scheme is proposed for a low-rank representation (by

singular value decomposition (SVD) or principal component analysis (PCA)) of the

large-scale data for most effective multi-channel data compression, removing the com-
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mon constraint that channel (sensor) number needs to be (much) larger than that of

the involved vibration modes. The effectiveness of the proposed method is demon-

strated by significantly compressing the large-scale structural seismic and typhoon

response data of the Canton Tower recorded by its SHM system. Results also show

that when using as large-scale data as possible, the low-rank representation after

matrix reshape becomes more outstanding and hence achieving more effective com-

pression.
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Figure 8.1 : The data compression scheme with the matrix reshaping strategy. The
original data matrix X ∈ R

m×N (m channels and each with N time history points)
does not have a low-rank structure (ρ = r/min(m,N) is not low with the active
eigenvalue number r and the dimension min(m,N)). Divide the fat X ∈ R

m×N into l
segments and reshape it to a new matrix X̄ ∈ R

w×v (w = m× l, v = N/l) with each
segment as one “row”. It turns out that the rank of X̄ ∈ R

w×v remains r′ ≈ r but
ρ′ ≈ r′/min(w, v) is significantly low hence a low-rank representation. Dimensionality
reduction is performed by Z̄r′ = ŪT

r′X̄ and finally one only needs to encode Z̄r′ ∈ R
r′×v

with r′ components each is of Rv where r′ ≈ r ≪ w. Recovery is performed by the
corresponding inverse linear transform X̄ = Ūr′Z̄r′ .
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Figure 8.2 : The sensor outline of the ambient vibration testing of the Canton Tower.
The number and arrow denote the sensor number and measurement axis, respectively.
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Figure 8.3 : The eigenvalues (square of the singular values) of the earthquake response
data matrices of the Canton Tower in their original dimension: X ∈ R

20×180000 for the
Burma Earthquake, X ∈ R

17×180000 for the Sumatra Earthquake, and X ∈ R
20×180000

for the Japan Earthquake.



www.manaraa.com

194

Figure 8.4 : The eigenvalues (square of the singular values) of the earthquake re-
sponse data matrices of the Canton Tower in reshaped dimension with l = 100:
X̄ ∈ R

2000×1800 for the Burma Earthquake, X̄ ∈ R
1700×1800 for the Sumatra Earth-

quake, and X̄ ∈ R
2000×1800 for the Japan Earthquake.
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(a)

(b)

Figure 8.5 : The recovery errors (averaged per channel) from the compressed data
(a) when retaining different numbers of the dominant principal components (b) with
the scaled retained number of the dominant principal components normalized by
its dimension (compression ratio). The dimensionality reduction are applied on the
earthquake response data matrices of the Canton Tower in reshaped dimension with
l = 100: X̄ ∈ R

2000×1800 for the Burma Earthquake, X̄ ∈ R
1700×1800 for the Sumatra

Earthquake, and X̄ ∈ R
2000×1800 for the Japan Earthquake. (The solid lines indicate

the errors calculated using the recorded data as correct data and the dashed lines
using the PCP-denoised data as correct data.)
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(a)

(b)

Figure 8.6 : The Burma Earthquake structural responses (accelerations) in Chan-
nel 1 of the Canton Tower recovered from the compressed data in (a) time domain
and (b) frequency domain, compared to the recorded and PCP-denoised data. The
dimensionality reduction are applied on the Burma Earthquake response data ma-
trices in reshaped dimension X̄ ∈ R

2000×1800 with l = 100 and only the first 50
principal components with larger singular values are retained (the compression ratio
ρ = 50/1800 = 0.0278).
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(a)

(b)

Figure 8.7 : (a) The eigenvalue of the Burma Earthquake response data matrices
X̄ ∈ R

w×v of the Canton Tower in reshaped dimension with different reshape factors
l (originally X ∈ R

20×180000 =∈ R
m×N , w = m × l, v = N/l). (b) a normalized

version of (a), with the eigenvalue index normalized by min(w, v) and the eigenvalues
normalized by the largest one.
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Figure 8.8 : The eigenvalue of the Nanmadol Typhoon response data matrices of
the Canton Tower in reshaped dimension: X̄ ∈ R

2000×1800 for the 1-hour data set,
X̄ ∈ R

4000×4500 for the 5-hour data set, X̄ ∈ R
6000×5400 for the 9-hour data set,

X̄ ∈ R
7200×7500 for the 15-hour data set, and X̄ ∈ R

9000×9200 for the 23-hour data set.
The eigenvalue index is normalized by min(w, v) and the eigenvalues normalized by
the largest one of each data set.
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Figure 8.9 : The eigenvalue of the Haima Typhoon response data matrices of the
Canton Tower in reshaped dimension: X̄ ∈ R

1800×1800 for the 1-hour data set, X̄ ∈
R

3600×4500 for the 5-hour data set, X̄ ∈ R
5400×5400 for the 9-hour data set, X̄ ∈

R
6480×7500 for the 15-hour data set, and X̄ ∈ R

8100×7200 for the 23-hour data set. The
eigenvalue index is normalized by min(w, v) and the eigenvalues normalized by the
largest one of each data set.



www.manaraa.com

200

Chapter 9

Data Cleansing using Low-rank Representation

Among many data management problems associated with the massive SHM data, a

fundamental one would be obtaining truly reliable structural response data for fur-

ther analysis; such is referred to the data cleaning process [47]. Unfortunately, the

real-world measured data typically contains considerable noise or errors that would

significantly affect further analysis. For example, Fig. 1.1 shows the ambient vibration

response data of the Canton Tower recorded from the structural health monitoring

system; it contains remarkable sparse outliers (gross errors), which call for efficient

data cleaning or de-noising algorithms before they can be used for structural assess-

ment. This chapter develops a new data denoising method which is able to simul-

taneously remove both dense noise and gross outliers in SHM data set; it explicitly

exploits the structure of the noisy large-scale SHM data: outliers are sparse in nature,

and the underlying clean multi-channel structural responses are intrinsically low-rank

(with few active modes).

9.1 Introduction

The de-noising problem in structural dynamics and SHM communities have been

studied using various techniques. Singular value decomposition (SVD, closely related

to the principal component analysis (PCA)) was proposed for noise reduction in

vibration signals of rotating machinery [143]. A Bayesian wavelet packet denoising
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scheme was developed for system identification; this approach can not only remove the

present noise, but also characterize the noise level of the data [71]. Also, an optimal

global projection denoising method was proposed to better capture the nonlinear fault

features in the vibration signals of the shaft orbits [58]. For removal of the noise in

the acoustic emission signals in local SHM damage inspection, particle filter based

method was also formulated and found to outperform other filtering methods [158].

Noise suppression method was also reported to facilitate robust damage identification

in beam-type structures [11].

These existing methods, however, are mostly devoted to removal of (Gaussian-

type) dense small noise in vibration signals; little efforts-if not none-have been made

to handle the outliers (sparse spikes with arbitrarily large amplitudes unreasonably

present in the signals), which are not uncommon in practical seismic monitoring or

SHM systems, such like those shown in Fig. 1.1. Such outliers may arise due to

sensor imperfection, instrumentation error, sensor failure, environmental factors, etc,

or simply because some measurements are considerably inconsistent.

This chapter develops a new de-noising algorithm in order to simultaneously deal

with both dense noise and outliers by exploiting the intrinsic dynamic information

contained in the structural responses. The developed method casts the de-noising

problem into the framework of low-dimensional matrix recovery in presence of both

grossly corrupted errors and small dense noise. First, a simple re-stacking strategy is

proposed to guarantee a low-rank representation of the structural response data ma-

trix corrupted by noise, by taking advantage of the observation that mode information

(typically few are active, hence the rank of the matrix) remain invariant regardless of

the reshaping of the data matrix. The reshaped data matrix is then decomposed into

a superposition of a low-rank matrix plus a sparse outlier matrix with small dense
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noise via the new technique principal component pursuit (PCP) [23][160], which is

also explored in Chapter 6. The denoised low-rank data matrix is finally re-stacked

back to its original shape as the estimation of the noise-free data matrix.

9.2 PCA/SVD de-noising

9.2.1 Principal components & vibration modes

In Section 1.3.2 of Chapter 1 and Section 8.1 of Chapter 8, the connection between

the principal components and vibration modes has been reviewed. Essentially, in

structural dynamics, under some assumption, the principal directions would coincide

with the mode directions [48] with the corresponding singular values indicating their

participating energy in the structural responses X ∈ R
m×N , i.e., the structural active

modes are captured by r principal components under broadband excitation. There

are typically only few modes are active in the structural responses [149]; in other

words, few of its singular values are active: r can be quite small.

9.2.2 PCA de-noising

If X is contaminated by small dense noise N0,

X̂ = X0 +N0 (9.1)

then de-noising can be achieved by keeping only the r principal components with

largest singular values, where the modal components are dominant over the noise,

while others dominated by noise are abandoned. Such a strategy is termed PCA

de-noising; if N0 is small and i.i.d. Gaussian, it is optimal in an ℓ2 sense, and can be

realized by the following program

(P2) : minimize ‖X̂−X‖ℓ2 subject to rank(X) ≤ r (9.2)
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where ‖X‖ℓ2 = σ1(X). From above, it can be observed that (traditional) PCA de-

noising would require m > r, i.e., the sensor number needs to be larger than that of

the involved modes (such a requirement is in fact a common assumption where PCA

is found effective such as in damage identification and feature extraction [39][49][73]),

which is not known a priori, however. Empirical thresholding would then be de-

manded in practice, say, keeping only r′ largest principal components. However, even

one single outlier in the measurement X̂ would render (P2) completely fail in finding

the true X0, since the ℓ2-minimization does not account for such grossly corrupted

error, which, unfortunately, is ubiquitous in practice. Robust PCA technique, PCP,

explicitly handles both small dense noise and large outliers, detailed as follows.

9.3 PCP de-noising

Robust PCA [23][160], termed PCP, is capable of dealing with the most challenging

de-noising problem-when the original data X ∈ R
m×N are addictively corrupted by

both gross errors (outliers) and dense noise,

X̂ = X0 +N0 + Z0 (9.3)

where Z0 ∈ R
m×N has few (sparse) but gross outlier elements with arbitrarily large

and located magnitudes, and N0 ∈ R
m×N is entry-wise i.i.d. small dense noise. PCP

(the stable version) aims to recover X0 by solving the following convex program

(P∗) : minimize ‖X‖∗ + λ‖Z‖ℓ1 subject to ‖X̂−X− Z‖F ≤ δ (9.4)

where ‖X‖∗ :=
∑

i σi(X) is the nuclear norm of the matrix X, which summates its

singular values; ‖Z‖ℓ1 :=
∑

ij |zij| denotes the ℓ1-norm of the matrix Z, which is

thought as a long vector; λ = 1/
√
N is a trading parameter, ‖X‖F :=

√
∑

i σi
2 is the
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Frobenius norm of X, and δ is some bounding parameter related to the small dense

noise level.

The nuclear norm is the convex approximation to the rank of a matrix, and the

ℓ1-norm is the tightest convex relaxation to the well-known sparsity measure ℓ0-norm

that simply counting the non-zero entries of a matrix. (P∗) can be interpreted as to

find the X⋆
0 with smallest rank and Z⋆

0 with sparsest representation that explain the

observation X̂ within a bounded noise level δ.

Candes et al. [23][160] rigorously proves that under surprisingly broad conditions,

with overwhelmingly high probability, (P∗) accurately recovers the true low-rank X0

and sparse Z0. Note that (P∗) assumes no any a priori knowledge of X0’s rank

nor the distribution of the singular values, nor the magnitudes and locations of the

non-zero entries (outliers) of Z0; all it requires are that X0 is indeed low-rank and

Z0 sparse. The detailed proof is referred to [23][160]. The convex (P∗) program

can be implemented using an Augmented Lagrange multiplier (ALM) method [81].

Inheriting from the virtue of convex program, the solution to (P∗) found by APG is

always globally optimal.

9.4 Guaranteed low-rank representation

The PCP technique with (P1) program is straightforward and tempting for the robust

de-noising problem. First, the good news is that the outliers or gross errors Z0 ∈

R
m×N present in the signals are indeed sparse as indicated by their nature. On the

other hand comes the bad news that X0 ∈ R
m×N , which is aimed to be recovered

from the noisy measurements X̂ ∈ R
m×N , is seldom (if ever) low-rank: for civil

engineering structures, typically large-scale, the sensor numberm is not so much more

than (often times even less than) the involved r modes; as a result, r ≪ m can’t be
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guaranteed for a low-rank representation. In fact, this assumption commonly made in

previous literatures can seldom be realized in practice that sensor numbers be larger

than involved vibration modes. On the one hand, as mentioned, civil engineering

structures are typically large-scale and may have numerous active modes; on the

other, when subject to complex or varying excitation, the mode number excited out

can be time-variant.

The matrix reshape scheme proposed in Section 8.2 of Chapter 8 can be adopted

to solve this problem, and the weak assumption for the success of PCP serves as

the key to constructing a low-rank representation of the structural response matrix

for robust de-noising. Divide the time history of each channel, say, xi ∈ R
N ( ith

channel), into l segments, yielding (xi)j ∈ R
v as the jth segment of xi, where v = N/l.

Then re-stack them into a new structural response matrix X̄ ∈ R
w×v,

X̂ = X0 +N0 + Z0 (9.5)

where w = m× l, X̄0, Z̄0, N̄0 ∈ R
w×v . Such a strategy can be seen as enhancing each

original spatial sensors with l “virtual” temporal sensors. Because there are still only

r modes involved in the re-stacked matrix X̄ ∈ R
w×v , then

rank(X̄) ≈ r ≪ min(w, v) (9.6)

i.e., X̄ becomes a low-rank matrix (a theoretical justification of Eq. (9.6) is shown in

Section 8.2 of Chapter 8). Plus, both the ℓ1-norm and Frobenius norm of a matrix

are summations of its entries and energy, respectively; as such, restacking won’t

essentially change the property that Z̄0 ∈ R
w×v remains sparse, and N̄0 ∈ R

w×v

bounded. With these assumptions satisfied, (P∗) accurately estimates the low-rank

X̄0 ∈ R
w×v (and the outliers Z̄0 ∈ R

w×v), which can then be readily re-stacked back

to X⋆
0 ∈ R

m×N .
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Note that the re-stacking guaranteeing low-rank representation also benefits the

traditional PCA de-nosing when the outliers are absent, as it removes the constraint

that the sensor number m > r (to ensure redundancy). Besides, Eq. (9.6) suggests

re-stacking X̄ ∈ R
w×v as square as possible, but this needs not to be exactly so in

practice, as will be illustrated by various examples in the numerical simulation section.

It is also interesting to note a somewhat obvious yet strange fact that long time history

(large N) is advantageous for a low-rank representation and hence the success of PCP

de-noising: large-scale data set is in fact more welcome (this is already seen in Section

8.3.2 of Chapter 8), but the computation burden will of course increase.

9.5 PCP de-noising strategy

The proposed PCP de-noising scheme is able to simultaneously remove both dense

noise and gross outliers under broad conditions for success; its implementation is

straightforward and efficient, following these steps:

Step 1. According to the matrix dimension, choose a reshape factor l that would

make the new structural response data matrix roughly square.

Step 2. Perform PCP on the shaped structural response matrix to recover the low-

rank matrix.

Step 3. Re-stack the recovered low-rank matrix back to the structural response matrix

in its original shape as the estimation of the clean structural response data.
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9.6 Numerical simulation

9.6.1 Model setup

To demonstrate the performance of the proposed PCP de-noising algorithm, numerical

simulations are conducted on the 12-DOF linear time-invariant mass-spring damped

model (Fig. 2.9) in this section. The parameters are set as follows: the mass is m1 =

2,m2 = m3 = ... = m11 = 1,m12 = 3, the spring stiffness is k1 = k2 = ... = k13 = 1,

Proportional damping is considered with respect to the mass matrix as C = αM

with α = 0.001. Newmark-Beta algorithm is used to obtain time histories of the

system responses. The sampling frequency is set at 10 Hz, and the time histories

2000 seconds, ending up with N = 20000 samples at each of the m = 12 channels,

i.e., the structural response matrix X0 ∈ R
12×20000.

9.6.2 Performance results

9.6.2.1 Reshape & low-rank representations

This section first shows that the strategy of re-stacking the structural response matrix

makes low-rank representations that are desired for effective de-noising. Free vibration

is induced by initial impact at the 12th DOF Different reshape factors l are applied to

re-stack the original clean X0 ∈ R
12×20000; for example, if l = 40, then w = 12× 40 =

480, and v = 20000/40 = 500, then the re-stacked X̄0 ∈ R
480×500, and so on. After

conducting SVD on the re-stacked matrix, the singular values are shown from Fig. 9.1

for free vibration case. They indicate that the singular values vanish fast for all the

re-stacked matrices, i.e., the rank of X̄0, r, is small. Take l = 40 for example again,

r ≪ min(w, v) = 480, i.e., X̄0 ∈ R
480×500 is indeed a low-rank matrix that may be

targeted by the PCP if corrupted by noise in practice, whose performance will be
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shown in the following section. Contrarily, for the original X0 ∈ R
12×20000 (l = 1),

although r is small, but min(w, v) = 12, which does not make a low-rank matrix.

Figure 9.1 : Singular values of the reshaped structural response data matrices of the
12-DOF model with different reshaping factors in free vibration.

9.6.2.2 PCP denoising of outliers

With the re-stacking strategy, the performance of PCP can be applied to simultane-

ously denoise both dense noise and gross outliers. Dense noise modeled as zero-mean

GWN (SNR=20 dB or 10% RMS noise level with respect to the original clean signal)

is first added to the structural response X0 ∈ R
12×20000 at each channel, and then

1% outliers (i.e., 2400 entries out of the 12× 20, 000 = 240, 000 ones) are distributed

uniformly at random among the matrix with normally-distributed magnitudes (zero-

mean and 10-variance) multiplied by the standard deviation of the first displacement

x1 ∈ R
20000; the measured noisy data matrix is therefore X̂ ∈ R

12×20000 with both

dense noise and sparse outliers.
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A reshape factor l = 40 is used and the PCP is applied to decompose the re-

stacked X̄ ∈ R
480×500, and it is shown that the PCP accurately recovers the original

clean structural responses from the corrupted measurements. Fig. 9.2 shows that the

noisy measurement with both dense noise and gross outliers are smoothly denoised

by PCP, and the PCP-denoised signal matches the original clean signal very well.

The PCA-denoising scheme is also conducted for comparisons. PCA fails whenever

gross outliers are present, as already shown in Fig. 9.2. To quantitatively measure

their performance, the recovery error at the ith channel is measured by

ǫi =
‖x′

i − xi‖ℓ2
‖xi‖ℓ2

(9.7)

or in an SNR measure

SNR = 20 log10
RMS(xi)

RMS(x′
i − xi)

(9.8)

where xi and x′

i are the original clean signal and the de-noised signal at the ith chan-

nel. Table 9.1 shows that PCP clearly outperforms PCA in simultaneous denoising

both outliers and dense noise.

9.7 Application on Canton Tower SHM data

The proposed PCP de-noising scheme is applied on the real-measured SHM data of

the Canton Tower (Fig. 8.2) in this section. The Canton Tower is a high-rise tall

building of 610 meters, located in Guangzhou City, China; more description of this

structure is referred to Ref. [108]. An advanced SHM system has been instrumented

with more than 800 various types of sensors to continuously monitor its performance

during construction and service stages. In particular, an SHM benchmark problem

was established based on full-scale field measurements; a set of 24-hour ambient

vibration data recorded from 18:00 Jan. 19th, 2010 to 18:00 Jan. 20th, 2010 is
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Figure 9.2 : PCP and PCA denoising with re-stacking strategy of the structural
responses with both GWN and gross outliers of the 12-DOF model in free vibration
(Channel 1), reshaped factor l = 40, α = 0.001, 0-200 seconds are shown for visual
enhancement.

provided on the website [1]. Twenty uni-axial accelerometers, whose layout is shown

in Fig. 8.2, were used to record the structural responses in the X and Y axis, with a

sampling frequency of 50 Hz.

As shown in Fig. 1.1, remarkable outliers are present in the measured SHM data,

which would significantly affect the value of the data for further analysis and identi-

fication. The one-hour data from 12:00 Jan. 20th to 13:00 Jan. 20th 2010 is used to

show the ability of PCP denoising in this study. The measured structural response

data matrix is then X̂ ∈ R
20×180000. The re-stack scheme is applied with l = 100

such that the reshaped X̄ ∈ R
1800×2000. The SVD analysis of X̂ shows that the sin-

gular values do not vanish whatsoever (Fig. 9.3(a)) and same situation happens for

X̄ ∈ R
1800×2000: the PCA de-noising scheme would not work, which is mostly caused

by the significant outliers.
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Table 9.1 : Denoising performance of PCP and PCA with gross outliers and dense
GWN (reshape l = 40).

Free vibration Random vibration

Channel SNR (dB) Error (%) SNR (dB) Error (%)

PCP PCA PCP PCA PCP PCA PCP PCA

1 50.36 12.48 0.30 23.76 48.56 14.24 0.37 19.41

2 50.33 19.52 0.30 10.57 48.74 15.95 0.37 15.94

3 50.09 18.45 0.31 11.95 49.20 17.30 0.35 13.65

4 50.23 16.68 0.31 14.66 49.39 19.93 0.34 10.09

5 49.92 20.64 0.32 9.29 48.93 19.85 0.36 10.18

6 49.89 15.05 0.32 17.69 48.73 13.95 0.37 20.07

7 50.20 19.07 0.31 11.13 48.21 15.50 0.39 16.80

8 50.14 8.76 0.31 36.50 48.73 16.95 0.37 14.20

9 50.12 18.99 0.31 11.23 49.03 22.21 0.35 7.75

10 49.91 18.95 0.32 11.28 48.87 18.61 0.36 11.73

11 49.84 13.47 0.32 21.21 48.37 15.01 0.38 17.77

12 51.50 22.35 0.27 7.63 48.65 19.07 0.37 11.13

PCP is used to denoise X̄, and then re-stack back to X̃ ∈ R
20×180000 and plotted

in Fig. 9.4. Clearly all the outliers are removed by PCP. Looking closely in Fig. 9.5

and 9.6, it is seen that the outliers are picked out and the denoised signals are smooth

(such as in Channel 10). Also observing the SVD results (Fig. 9.3(b)), the singular

values of the restacked de-noised structural responses decay much faster than the

noisy re-stacked one, which means that much less noise are present in the de-noised

signals.
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For comparisons, the traditional low-pass filter de-noising method with a band-

width up to 2 Hz is applied to the measured X̂ ∈ R
20×180000. Results show that

the noise is not effectively removed: Fig. 9.5 shows that the outlier is not removed,

and there is obvious phase aliasing in the de-noised signal (Fig. 9.6), which does not

happen in the PCP-denoised signal.

(a) (b)

Figure 9.3 : Singular values of the Canton Tower one-hour ambient vibration ac-
celeration matrices: (a) in its original dimension 20 × 180000 and (b) in reshaped
dimension 2000× 1800 of the measured data and PCP-denoised data (reshape factor
l = 100).

9.8 Summary

This chapter presents a new denoising scheme for removal of both dense noise and

outliers common in the measured structural vibration responses via principal compo-

nent pursuit (PCP). It exploits that outliers are sparse in nature, and the underlying

clean multi-channel structural responses are intrinsically low-rank (with few active

modes). A simple and effective strategy (proposed in Chapter 8) of re-stacking the

structural vibration responses, which does not essentially change the contained struc-
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Figure 9.4 : The PCP-denoised (reshape factor l = 100) one-hour structural vibration
accelerations of the Canton Tower (20 channels’ data are shown in different colors).

Figure 9.5 : The PCP-denoised and filter-denoised acceleration of Channel 2 of the
Canton Tower one-hour SHM data compared to the measured data (shown between
605-635 seconds for visual enhancement).
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Figure 9.6 : The PCP-denoised and filter-denoised acceleration in Channel 10 of the
Canton Tower one-hour SHM data compared to the measured data (shown between
1470-1490 seconds for visual enhancement).

tural dynamic information, is used to guarantee a low-rank representation such that

the challenging denoising problem can be cast into the PCP framework.

Detailed numerical simulations are conducted and results shows that PCP works

well under various conditions in handling both types of noise altogether; especially,

the assumption used to be made in traditional PCA method that sensor number be

larger than mode number is avoided thanks to the re-stacking strategy, which also im-

proves the traditional PCA-denoising method when only dense noise is present. Also,

compared with PCA with thresholding scheme, the PCP denoising scheme needs no

any prior information with respect to the distribution and magnitudes of the data

matrix’s singular values: it can be implemented “blindly”. The ability of PCP for

practical applications is also illustrated in denoising the real-measured monitoring

data of the Canton Tower. PCP with the re-stacking strategy in denoising the struc-
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tural vibration responses would be highly expected for large-scale data management

in structural dynamics and SHM applications.
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Chapter 10

Conclusions and Future Research

10.1 Conclusions

The dissertation establishes a new paradigm with effective and efficient data process-

ing and management algorithms towards rapid, unsupervised, and automated health

monitoring and assessment of civil structures. Different from the traditional model

based and parametric methods that are usually computationally intensive and require

extensive user-involvement, the proposed methodology is data-driven in nature–by

harnessing the data structure itself of the (available) structural response data set.

The implications of the sparse representation and low-rank structure of the SHM

data set are interpreted as the salient structural dynamic and damage features in

output-only modal identification, damage detection and non-destructive assessment,

and massive data management of civil structures. Numerical simulations, laboratory

experiments, and field measurement data of the super high-rise Canton Tower and

seismically excited buildings validates the effectiveness and efficiency of the proposed

data-driven paradigm.

• New output-only non-parametric modal identification methods are proposed

based on the unsupervised multivariate blind source separation (BSS) tech-

niques. They are data-driven in nature, allowing fairly efficient implementation

and imposing little user involvement. Specifically, the signal complexity of the

(only available) structural responses and the underlying modal responses are
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exploited and a direct connection between the modal expansion and the BSS

model with the complexity pursuit (CP) learning rule. CP is found to be suit-

able for identification of a wide range of linear structures without the need of

tuning parameters, as opposed to existing BSS based methods such as ICA

(limited to lightly-damped structures) and SOBI (dependent on the lag param-

eter). Addressing the identification problem with limited sensors in the BSS

framework, the proposed SCA based method harnesses the sparsity nature of

the underlying modal coordinates; it interprets the modal expansion in a new

perspective of sparse clustering, making the output-only modal identification

fairly user-friendly and efficient.

• A data-driven multi-scale (global and local) framework is proposed for damage

detection of civil structures. The sparse feature is proposed as the salient signa-

ture of damage implicit in the (often very noisy) structural data (pulse-like fea-

ture in vibration responses or sparse white pixels in the close-up images/videos

of structures). This damage indicator–sparse feature–not only has rich implica-

tions in mathematical formulation (especially with the explosive development

in sparse representation and compressed sensing), but also can serve as a simple

and intuitive cue in automated damage alarming systems on civil structures.

In detail, the proposed unsupervised multivariate ICA based damage detection

method is capable of extracting the sparse components hidden in the multi-

channel noisy structural responses on the (traditional wavelet domain), simul-

taneously identifying both damage instants and damage locations. In addition,

a novel sparse representation classification method is presented for both locating

damage and estimating damage severity; it interprets the nature of the classifi-
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cation problem in a new perspective of sparse representation and establishes an

extremely simple data-driven empirical sparse representation methodology. As

opposed to traditional pattern recognition based methods, the proposed method

does not require the process of reference training or setting up parametric clas-

sifier model that is computationally intensive and user-dependent.

Finally, a new data-driven framework of high-rate dynamic imaging (close-up

“filming”) of structures is proposed to automate real-time damage detection of

local structural components. The data structure of the multiple close-up im-

ages is interpreted as a superposition of a low-rank component and a sparse

component; the low-rank component represents the irrelevant highly-correlated

background among the temporal frames, whereas the sparse component cap-

tures the dynamic innovation information induced by damage. As opposed to

existing digital image processing techniques for damage detection, the proposed

dynamic imaging method does not require a parametric model (without any

tuning parameters) or prior structural information (e.g., geometry) for calibra-

tions or reference.

• New data compression and data cleansing algorithms are developed to address

the emerging large-scale SHM data management problems. A notable conclu-

sion out of this dissertation work is that low-rank structure exists–intrinsic but

implicit–in the multi-channel large-scale structural response data. Such a low-

dimensional structure, empirically, stems from that few modes are active in the

structural responses. However, originally, limited to the sensor and time-history

dimension, the structural response data set generally doesn’t have an explicit

low-rank representation; a matrix reshape scheme is proposed to guarantee the
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low-rank representation of the large-scale data set regardless of the original

data dimension. This is theoretically justified that mode information (typically

few are active, hence the rank of the structural response data matrix is small)

remains invariant regardless of the reshaping of the data matrix.

Specifically, a new unsupervised data compression method is proposed based on

low-rank representation and multivariate learning rule ICA. Especially, ICA is

found to be the optimal multivariate adaptive learning rule for data compression

by transforming the multi-channel structural responses to an most independent

space which removes both intra- and inter- redundancy of the multi-channel

structural response data. A very high compression ratio is achieved while re-

taining excellent reconstruction accuracy when compressing two sets of real-

recorded structural seismic records.

To guarantee a low-rank representation of any structural response data matrix,

a matrix reshape strategy is proposed to achieve most effective compression of

very large-scale structural response data. The proposed matrix reshape scheme

removes the common premise in existing PCA/SVD based methods that the

number of the active modes is much less than that of the sensor for a low-

rank representation. Finally, a new and practical data cleansing algorithm

is proposed for simultaneously removing both dense noise and gross outliers

(naturally as sparse elements) which are ubiquitous in multi-channel SHM data

sets (with implicit low-rank structure), while traditional data denoising methods

can only deal with (Gaussian-type) white noise.
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10.2 Other accomplished research & ongoing research

Within the established data-driven framework for efficient and effective system iden-

tification and health monitoring of civil structures, other accomplished research as

well as several ongoing research, also as part of this thesis work, are briefly mentioned

in the following due to limited space:

• Motivated by the drawback of the original independent component analysis

(ICA) based output-only modal identification which is only suitable for very

lightly damped structures, a time-frequency ICA method is proposed to identify

even highly-damped structures by exploiting the sparse time-frequency (short-

time-Fourier-transformed (STFT)) representations of the available structural

responses and the underlying modal responses. Numerical simulations, exper-

imental study and real-world seismically excited structure examples are pre-

sented for validation [145]. In addition, complex modes of structures can also

be very efficiently identified by a straightforward extention of the proposed

method to a complex-valued representation of the time-frequency ICA method

[102].

• Existing cable force measurement devices, such as anchor load cells, magnetoe-

lastic (EM) sensors, and optical fiber Bragg grating (OFBG) sensors, which are

embedded along with the installing of the newly-built bridge cables, are able to

directly record the time history of cable tension. It is known, however, that these

sensors are expensive and the labor of installation these sensors onto cables is

quite intensive. Moreover, the durability issue of the cable force sensors, which

may have only few years’ service life, significantly hinders their applicability in

practice [94][131][80]. Considering the costly and challenging effort needed to
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replace these cable sensors, it desirable to seek more reliable, economical, and

convenient approaches for real-time monitoring of the cable force.

It is proposed in the thesis work [144][106] to exploit the direct formula between

time-varying cable tension and its time-varying frequency by the unsupervised

real-time learning capability of BSS (Chapter 2) to establish the framework

of real-time blind (unsupervised) identification of time-varying system (modal

frequency) from only the cable accelerations (output-only) for real-time identifi-

cation of cable tension time history. The benefit of such a data-driven paradigm

is that it uses as little information as the cable accelerations which can be col-

lected from the attached accelerometers that are cost-effective, reliable, and

conveniently embedded (or replaced) in any in-situ or new cables. The pro-

posed method has been validated by laboratory experiments of a stay cable and

field data of a cable-stayed bridge.

• Modal identification or testing of structures consists of two phases, namely, data

acquisition and data analysis. Some structures, such as aircrafts, high-speed

machines, and civil structures (e.g., plate-like structures), have active modes in

the high-frequency range. In the data acquisition step, the Shannon-Nyquist

sampling theorem indicates that capturing the high-frequency modes (signals)

requires uniform high-rate sampling to avoid aliasing, which would result in

sensing too many samples.

To address this problem, in the thesis work, an alternative non-traditional sens-

ing framework–the recently-developed compressed sensing technique with non-

uniform low-rate random sampling–is explored. A new method for output-only

modal identification of structures in a non-uniform low-rate random sensing



www.manaraa.com

222

framework is proposed [153] based on a combination of compressed sensing

(CS) and blind source separation (BSS). Specifically, the proposed method uses

the CP technique (Chapter 2) to directly decouple the non-uniform low-rate

random samples of the structural responses, simultaneously yielding the mode

shape matrix as well as the low-rate random samples of the modal responses.

Then ℓ1-minimization recovers the underlying uniform high-rate modal response

from the CP-decoupled non-uniform low-rate random samples of the modal re-

sponse, thereby enabling estimation of the frequency and damping ratio. Nu-

merical examples, experimental bench-scale model, and the real-world seismic-

excited base-isolated hospital building examples show that it is feasible to use

the proposed output-only modal identification method to identify the modes

using non-uniform low-rate random sensing, which can be far below what is

suggested by the sampling theorem.

Our recent work further extends such a sub-Nyquist non-uniform low-rate ran-

dom sensing framework to traditional uniform low-rate sensing, and proposes a

CP based method for output-only modal identification of structures when the

uniform sampling rate is far from sufficient or when aliasing has long occurred.

More details are covered in Ref. [105].

10.3 Future research

Inspired by the dissertation work, possible future research may be devoted to address-

ing several major problems in the areas of health monitoring and assessment of civil

structures, which are summarized as follows:

• Besides system identification, damage detection, and data compression and
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cleansing, the methodology of explicitly harnessing data structure (sparse rep-

resentation and low-rank structure) of large-scale data sets may be extended to

other data problems in civil engineering, such as data sensing and data com-

munication in sensor networks, building information model (BIM), and infras-

tructure networks.

• The sparse representation classification (Chapter 5) is a general classification

framework; it can be easily adaptive to other pattern recognition problems in

civil engineering as long as one builds up a reference dictionary (simply lining

up all the reference features without training) and represents the test feature as

a linear combination of the bases of the reference dictionary. In addition, in the

dissertation, although the reference dictionary depends on simulating different

classes from a FEM model, it need not necessarily be so; reference features

in the dictionary can come from any known prior information, e.g., features

learned from historical data and classes if available.

• Currently non-destructive assessment of civil structures are offline. It is pos-

sible to embed a digital camera network enhanced with the proposed dynamic

imaging method (Chapter 6) to continuously perform close-up monitoring of

structures. Such a camera network can be incorporated into the global sensor

network for a truly multi-scale SHM system with exchanged and communicated

information. For example, normally the cameras take low-rate close-up images

to perform long-term assessment of structures such as corrosion and creep, until

the global sensor network has detected the damage location area and sends a cue

to the cameras in the vicinity of the identified damage location to take high-

rate close-up images (especially during extreme events such as earthquakes),



www.manaraa.com

224

providing finer local damage information.

• The measured massive SHM data are mostly stored in the database without

appropriately taken advantage of. The big data technology has presented op-

portunities of mining these very large-scale data to extract valuable structural

information, potentially, due to long-term environmental effects, climate change,

and post-disaster effects.

• The developed data-driven paradigm with efficient and effective system identi-

fication, damage detection, and data management algorithms has considerable

potential to be applied in real-world SHM systems of large-scale civil structures.

For example, it may be developed into a software package to be embedded into

the computing center in the base station; it can also be modified into decen-

tralized algorithms to be embedded into the wireless sensors with distributed

computing capabilities.
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